
Danesh: Helping Bridge The Gap Between
Procedural Generators And Their Output

Michael Cook1, Jeremy Gow2, and Simon Colton1,2
1Metamakers Institute, Games Academy, Falmouth University

2Computational Creativity Group , Goldsmiths, University of London

this space intentionally left blank

ABSTRACT

Procedural content generation is more popular than ever among game developers, but un-

derstanding, adjusting and perfecting a procedural generator is difficult for newcomers and

experts alike. In this paper we present Danesh, an intelligent tool we are building to help

developers of all skill levels explore, improve and understand procedural generators. We

discuss the structure of the tool, report on the techniques used, and lay out the future of the

project.

Keywords

procedural generation, assistive design, computational creativity

INTRODUCTION

Procedural content generation (PCG) is an important part of modern game development

technology (Mossmouth Games, 2008), useful both as a tool for solving problems and a

paintbrush for expressing ideas, and often employed as both at once (Hello Games, 2016).

The ability to generate game content automatically opens up the potential for new kinds

of game to be made possible, as well as easing the development of traditional games by

allowing abundance, serendipity and surprise to be added to a game in very simple ways.

We are only just beginning to discover the potential of generative methods as a design tool.

Many other kinds of game development technique could be placed in this category, such as

in-game physics. Physics engines were powerful tools for adding value to a game, making

the world seem more real and chaotic. They eventually gave way to new mechanical ideas

and ultimately entire games based solely on the notion of physics interactions, with Angry

Birds being a particularly pure example of this. But there are important differences between

technology like physics engines and procedural content generation, including that modern

game development tools tend not to include any assistance for PCG built-in.

A tool such as Unity includes off-the-shelf support for pathfinding, basic AI routines, built-

in customisable physics engines, a complete particle system, complex collisions in 3D or

2D space, and more – all of these are tools that speed up game development, and most

importantly they provide access to these concepts for users who may not be familiar with the

ideas behind them, or unable to write the code themselves. Most common PCG techniques

do not appear in tools like Unity as default services, and tutorials tend to focus on single

processes or highly specific kinds of content rather than generation as a broader concept,

and so people approaching game development from any angle other than a programming

background may find it harder to get started.

Additionally, implementation is only half the story. Building a procedural generation system

only gets a designer so far – often there is a better technique to be used, a better parame-

terisation, a better way of achieving the intended results. Understanding the relationship

between the generator they have written and the output it produces is extremely difficult.

Many tutorials for procedural content generation focus on how to achieve a result, a com-

plete algorithm that produces output. But the idea of refining this system and being able to

adjust and tweak it to taste is often absent – (CaptainKraft, 2013) ends by stating ’the final

step is down to you: you must iterate over what you learned to create more procedurally

generated content for endless replayability’.

In this paper we present Danesh, a tool for exploring, understanding and improving proce-

dural generators. Danesh is currently capable of visualising the expressive space of a gen-

erator, helping a user understand the effect of changing parameters, automatically adjusting

parameterisations of a generator, and providing detailed analysis of content generated. Most

importantly, Danesh can be integrated with new procedural generators using a simple pro-

gramming interface, allowing it to automatically detect new generators and immediately

start working with them.

In the remainder of the paper, we describe the tool in detail, discussing both the implemen-

tation of the tool itself and the functionality it provides. In Related Work we introduce some

background in procedural generation analysis that informed the work in Danesh, particularly

with respect to expressive range analysis. In Danesh we describe the basic functions of the

tool and how it is used within Unity. We also describe the techniques used and go into depth

about the tool’s auto-tuning function. In Future Work And Open Problems we describe the

plans for the tool’s ongoing development, and argue how these are also important objectives

for procedural content generation research as a whole.

RELATED WORK

In this section we provide an overview of some work relating to procedural content genera-

tion either in the context of it being studied as a tool for designers, or methods for evaluating

generators in certain ways. For a full overview of AI research in procedural generation, we

direct the reader to (Togelius et al, 2011).

In (Khaled et al, 2013) the authors present procedural generation from the perspective of

those who use it, and highlight the different metaphors practitioners use when discussing it.

One of the motivations for the work is to explore the possibility for a ’shared language’ with

which to talk about procedural content generation across different communities and areas

of expertise. The four metaphors proposed are Tool (something which acts as an extension

of its user to achieve a goal); Material (something that can be shaped or manipulated into

a particular form); Designer (something that solves a design problem independently or col-

laboratively); and Expert (something that holds specific knowledge about a domain and can

interpret data based on this knowledge).

The work presented in (Khaled et al, 2013) not only reinforces how widely-used procedural

generation is, by people of diverse backgrounds and experience, but also how important it

is to provide different ways of engaging with this technology, and to assist people in getting

the most out of these ideas by providing different ways to think about and explore them. We

– 2–

believe the work on Danesh outlined in this paper continues some of these ideas by trying

to provide new tools to help people better understand procedural generation.

In (Craveirinha et al, 2013) the authors propose a framework for assisting designers in

experience-driven procedural content generation, and report on a preliminary experiment

to optimise the Infinite Super Mario level generator by attaching a genetic algorithm to sev-

eral parameters of the game. The generator is then told to optimise for a particular player

outcome such as the average number of times a player dies. The paper mostly proposes a

framework for future development, since their tool is hardwired to one particular genera-

tor in one particular game, and dependent on having parameters provided that the designer

knows will have an impact on achieving their stated design goals. Our work with Danesh

stands apart from this partly by prioritising generality and interactivity, but also because it

requires less design knowledge up-front, and can be used as an exploratory tool as well as a

targeted problem-solver.

The Sentient Sketchbook, described in (Liapis et al, 2014), is a similar design assistant

that uses procedural generation. Instead of optimising a generator, the Sentient Sketchbook

is a combined generator and co-creator, taking on responsibility for the design of maps

and levels and able to engage a designer in a kind of dialogue. The Sentient Sketchbook’s

emphasis on visualisation inspired the development of Danesh’s interface, although the tools

are quite different – the Sketchbook is focused primarily on map generation and is built

into its own generator, whereas Danesh is intended to be a general-purpose tool and can

be combined with user-written generators or evaluatory metrics (although this has not been

fully implemented at the time of writing, the architecture is present within the tool).

Expressive Range
One of the important functions in Danesh currently is the ability to analyse the expressive

range of a generator, and then use that information to perform further analyses and adjust-

ments to the generator. The notion of analysing a procedural generator’s expressive range

is derived from (Smith and Whitehead, 2010), which describes a tool, Launchpad, which

generates levels for a platforming game. The authors outline their analytical approach to

evaluating expressive range as the following process:

• Determine appropriate metrics – a set of metrics for evaluating different qualities

of one piece of generated content, in Smith and Whitehead’s case a platformer level.

They write: ‘These metrics should be based on global properties of the levels, and

ideally should be emergent from the point of view of the generator’. We believe that

by this the authors mean that these metrics should return meaningful values for any

valid level (rather than only analysing levels with a particular piece of content in, for

instance) and that the metric value should be dependent on the output of the generator,

and not be something that could be calculated based simply on an inspection of the

generator’s code.

• Generate content – a large number of pieces of content are made by the generator

and collated together. The metrics are applied to each piece of content to score it.

• Visualise generative space – in this step, the metric scores for the generated content

are visualised in some way. Smith andWhitehead propose ‘one effective way to view

– 3–

this range is by creating a number of 2D histograms, where the axes are defined in

terms of the metric scores’.

• Analyze impact of parameters – by analysing the histograms, one can now identify

anomalies in the generative space according to the metrics defined in the first step.

One of the motivations behind this first version of Danesh was to take this process and make

it extensible and easily accessible to less experienced users. However, we will also show

how Danesh extends the use of expressive range analysis so that it becomes a jumping-off

point for further analysis work and improvement of the generator.

DANESH

In this section we will describe the operation of Danesh, its various functions and how they

are implemented. We concludewith a brief explanation of how new generators are integrated

into the tool, to show how we are aiming to make the process as simple as possible. Danesh

is written in C# as a plugin to the Unity game development environment. Although the

techniques we describe in this paper could easily be reimplemented in other libraries and

platforms, we selected Unity because of its popularity and its ease of extension. Danesh is

open source and can be downloaded via GitHub1. Tutorials for its usage are also available

online2.

Before Startup

Before we describe Danesh’s appearance and functionality, we wish to give the reader some

background on how the tool loads information and presents it to the user. One of the impor-

tant features of Danesh is its generality and its ability to load in unseen procedural generators

and still be able to provide analysis and assistance in exploring the generator. It achieves

this through the use of reflection, a metaprogramming technique that allows software to

examine code at runtime and extract information from it. This means that there is a small

amount of setup required to make a procedural generator compatible with Danesh, but we

are working to make this as minimal as possible.

Danesh needs some initial setup before it can load a procedural generator – it needs access to

the generator itself, meaning a segment of code it can execute that results in a piece of gener-

ated content; it needs a visualiser that can turn generated content into something displayable;

and it needs a list of parameters that affect how the generator runs. It discovers these things

using C# attributes, a way of labelling code that can be discovered at runtime. The following

code shows a method that has been tagged with an attribute called [Generator]:

[Gen e r a t o r]

p u b l i c T i l e [,] Gene r a t eLeve l () {

/ / Gene r a t o r code . . .

r e t u r n t i l e s ;

}

1http://github.com/gamesbyangelina/danesh
2http://danesh.procjam.com

– 4–

This attribute should be placed on the method that generates the content to be analysed. It

needs to have a very specific method signature: it should take zero arguments and return

an object of some kind. Danesh is agnostic to what the object is or what it contains - all

methods that interact with the object, such as the visualiser, have their domain-specific code

provided by the user currently.

The visualiser is labelled using a Visualiser attribute. The user can either provide code

which renders something onto a texture –useful for displaying visual content such as maps

–or a much simpler text renderer. Even if the content is not explicitly textual, it may make

more sense to display it this way. For example, an item generator for an RPG might render

its output as a list of details about the item.

Parameters are tagged to indicate that the user wishes to interact and adjust them using

Danesh. Unlike the [Generator] attribute, this attribute has additional metadata provided.

The following code shows a parameter tagged with the [Tunable] attribute.

[Tunable(MinValue: 0.1f, MaxValue: 0.7f, Name:"Initial Spawn Chance")]
public float ChanceTileWillSpawnAlive = 0.45f;

[Tunable(MinValue: 1, MaxValue: 6, Name: "No. Of Iterations")]
public int NumberOfIterations = 5;

MinValue and MaxValue are used by Danesh to understand the limits of the parameters.

These can be set by the user to limit Danesh’s exploration of the parameter space to keep it

within limits that are likely to be interesting, or to avoid values that would cause extremely

long execution times or crashes. Of course, if the user is unsure about what interval would

be useful to examine, they can set very large values and let Danesh work harder. These

parameters are largely for fine-tuning or extra customisation. Name is used in Danesh’s UI

to provide an easier way of seeing what a parameter is for, rather than using its variable

name in code.

Danesh is implemented as a plugin to Unity, meaning it runs as a separate editor tab in the

main workflow of the tool. When it runs, the user specifies a generator object in the open

scene, and Danesh uses C#’s reflection library to inspect the code. One of the features of

reflection is to search for custom attributes such as our Generator and Tunable attributes.

Once it finds these, it launches with the tagged generator method and parameters loaded in.

Figure 1 shows a screenshot of Danesh just after starting the tool up. Danesh currently pro-

vides several default procedural generators already configured for use with the tool, mean-

ing they can be run without writing any code in order to experiment with the tool. The

generators include basic versions of the popular Drunkard Walk algorithm (Roguebasin,

2014) and a Cellular Automata Generator (Cook, 2013), with both generators producing

two-dimensional arrays representing game levels. We discuss the expansion of the tool be-

yond two-dimensional level generators later in the paper. The following sections describe

Danesh’s functionality after loading.

– 5–

Figure 1: The main screen of Danesh at startup.

Generating Content

The ’Generate Content’ button in the bottom-centre of Figure 1 generates a single piece of

content from the currently selected generator, and displays it in the centre of the screen.

It does this by calling the method tagged with the Generator attribute, and then passing

this object to the Visualiser method. This can be repeated many times to see examples

of content in rapid succession. Each time a piece of content is generated, the currently

active metrics (which we will cover later) are calculated for the new content and displayed

in the top-left corner. This provides an immediate connection between generated content

and metric for the user.

Parameter Control

In the top-right corner is a list of parameters that control the behaviour of the generator. This

is a list of all parameters tagged with the Tunable attribute, displaying whatever name was

given in the attribute’s metadata. Changing the values of the parameter immediately feeds

back to the underlying generator, which means that pressing the Generate Content button

will take these changes into account, and generate a different kind of content to before.

Danesh currently supports numerical parameters such as float and int, as well as boolean
values which have their own interface for changing their value (colour-coded to show True

and False settings). Other types, including lists and more complex data types, will be added

as the tool develops.

Metric Measures

In the top-left corner are a set of metric scores, based on the same concept described by

(Smith and Whitehead, 2010) earlier. A metric captures some quality about a piece of gen-

erated content, and scores it in the numerical interval [0, 1]. Because Danesh does not know

– 6–

in advance what kind of content is being generated, the user currently is responsible for writ-

ing their own metrics and tagging them with Metric attributes so that Danesh can discover

them. Deciding what a useful metric would be and writing it is the most complex part of

using Danesh currently, and we will expore ways to make it easier to do in future.

In this paper, examples will refer to the Openness and Density metrics for maps. Openness

measures how empty a level is – it calculates the number of tiles that have no solid neigh-

bours, and returns that number as a percentage of the total map size. Density measures the

total number of solid tiles, and returns that as a percentage of the total map size. Note that

these two metrics are related, but not linked – a map can be low density but not be very

open, if the open space is broken up with lots of solid walls, for example.

Expressive Range Analysis

These metrics are also used in the expressive range analysis (ERA) feature, which is situated

in the bottom-right of the screen. As described in the section Related Work, Danesh creates

a two-dimensional histogram for visualising the results of an ERA pass, with the two metric

values providing each data point. When the user calculates an ERA, Danesh samples the

generator many times and records metric scores for each piece of content. When complete,

the user can then select two metrics from drop-down boxes and see a histogram generated

for them.

There are two buttons in the ERA section, labelled ’ERA’ and ’RERA’. The ERA button

performs an expressive range analysis using the current parameterisation of the generator.

This is closest to what is described in (Smith and Whitehead, 2010). It runs the generator a

large number of times to accumulate many metric scores, and then displays the results in a

histogram with each axis referring to one of the two selected metrics. Currently it generates

2,000 pieces of content for the histogram. (Smith and Whitehead, 2010) use 10,000 for

their expressive range analysis, but we found 2,000 to be an effective tradeoff given the

interactive nature of the tool. Performance and speed is something we discuss later in the

paper, and we intend to make this value customisable in future versions of Danesh. Once

the ERA is complete, the histogram displays in the center of the screen. A darker spot on

the histogram indicates that fewer pieces of content had those two metric values, while a

lighter spot indicates that more content fell into this area. Figure 2 shows a sample ERA of

the default Cellular Automata Generator.

RERA stands for Random Expressive Range Analysis. This runs the generator many more

times than a standard ERA, but each time it randomises the values of the parameters of

the generator using the minimum and maximum values provided in the Tunable attribute

metadata. The resulting ERA histogram may look very different to the standard ERA, as

it shows the spread of metric values across a large number of possible parameter settings.

In doing so it reveals how different parameterisations of the generator result in different

expressive spaces. The RERA is a useful tool for showing the potential unexplored space

inside a procedural generator, since it reveals to the user whether changing parameters can

move the generator to a new subspace of the multi-dimensional metric space. This might

spur the user on to adjust parameters and tweak the expressivity of the generator. Figure

3 shows a RERA of the same generator as Figure 2, with the original ERA painted in red

(circled for those reading in black and white).

– 7–

Figure 2: An expressive range analysis of a cellular automata level generator.

Auto-Tuning Parameters

The final feature of Danesh brings together all of the other aspects of the tool into one func-

tion called auto-tuning. The expressive range analysis histograms reveal useful information

about a procedural generator, and by using a RERA the user can discover that there are new

expressive spaces that their generator could occupy but that they have not been able to pa-

rameterise it for yet. While the user could change parameters manually and try to run ERAs

to discover if they are successful, this is a slow process and may not always work (since

a linear change in a parameter may not result in a monotonically linear change in metric

values, and parameters may not be linearly linked).

Ideally, we would like the user to be able to indicate a region of the expressive range space

they are interested in and have Danesh automatically seek out a parameterisation that results

in a similar expressive range histogram. Auto-tuning attempts to provide this, by allowing

Danesh to automatically vary parameter values to search for settings that result in particular

metric values or regions of the expressive space.

In the bottom-left corner of the main screen there is a list of metrics, derived from the same

attributes that generated the metric reports and the ERA metric selections. Each metric has

an input field next to it and a checkbox. The user can write in the values they’d like to

target for each metric, and check the box to indicate that that metric should be included in

the computational evolution. This allows the user to target only a single metric, or to target

multiple simultaneously.

Before the process begins, the user can also tell Danesh which parameters it is allowed to

change in order to achieve the metric output. Even if the user wants help from Danesh in

tuning its generator, they may already have some insight into which parameters are likely

– 8–

Figure 3: A random expressive range analysis (RERA) of a cellular automata level genera-

tor. The ERA from Figure 2 is overlaid in red and circled.

to be changed, or they may simply not want Danesh to change certain parameters because

they have already been tuned in a way the user is happy with. Unchecking boxes next to

parameters in the top-right corner will stop Danesh from changing this parameters during

the auto-tuning process.

Searching For Parameter Values

When the user clicks ’Auto-Tune’, Danesh begins a search for parameter values. We tested

four techniques for performing this search: an evolutionary system, a grid search, a hill

climber, and a random search. Before we discuss the use of these techniques, we briefly

describe how each one works in turn. In all cases, a set of parameters is evaluated to assess

how good it is at achieving the user’s intentions. The fitness measurement for a set of

parameters is based on an average of the distance between the target metric values set by

the user and the metric values measured on the generated levels. Formally:

Given a set ofnmetric functions f1 . . . fn ∈ F , a target value ti for eachmetric function fi ∈
F , and a set of generated content c1 . . . cp ∈ C, we define the fitness of a parameterisation

of a generator as follows:

mi =

∑
cj∈C

fi(cj)

|C|
δi = |mi − ti|

Where mi denotes the mean value for metric function fi on the set of generated content C,

and δi denotes the difference between the user’s target value for the metric and the observed

– 9–

mean value. The fitness Φ is then expressed as an average of these differences:

Φ =

n∑
i=1

δi

|F |

Evolutionary Search Each member of the population is a list of parameter values, with

one for each selected parameter in the UI. A member is initialised by randomly setting the

value between the minimum and maximum values set by the attribute metadata. Danesh

then evaluates the population by taking a set of parameters, applying them to the generator,

executing the generator a number of times and recording an average score for each of the

target metrics, as described earlier.

After the population has been sorted according to fitness, the highest-fitness parameter lists

are crossed over to create a new population. The top half of the population are used to

generate the next population. Crossover is performed by one-point crossover on the list of

parameters, with a 5% mutation rate (derived after some experimentation) which inserts a

new random value for a parameter instead of inheriting from its parents.

Danesh’s default settings run a population of 20 parameters lists, run for 20 generations,

with 70 examples generated for each evaluation of a parameter list. Like the expressive

range analyses, we found these values to be a useful tradeoff of evolutionary thoroughness

and a reasonable execution time. Despite this, using evolution for auto-tuning is still a slow

process and can be even slower if the generator takes a long time to generate a single piece

of content. We will discuss this later in future work as an ongoing issue.

Grid Search Inspired by its use in parameter optimisation in machine learning (Pedregosa

et al, 2011), we implemented a grid search which attempts to evenly sample the parameter

space. Given a sampling rate s, we construct sets of parameter values such that every param-

eter is set to s different values in the value range (that is, each time we change the parameter,

we change it by 1/s of the difference between its maximum and minimum value). We test

every permutation of these parameters, such that for p parameters and a sampling rate s, we
generate sp sets of parameters.

Hill Climbing We also implemented a random hill climber which resets when it reaches a

local maxima but remembers the maxima in the case that it does not find a better example.

The hill climber terminates after a certain amount of time has passed. This technique is

specifically designed to offer a tradeoff of performance against time, by being able to provide

an upper bound on its running time.

Random Search As a comparator, we implemented a random search which performs as

many evaluations as the Grid Search by repeatedly generating and testing random parame-

terisations.

Technique Evaluation Results

There are two important measures to consider in evaluating techniques for auto-tuning. The

first is how well the auto-tuning performs; that is, the ’fitness’ of the best parameter set

– 10–

found during auto-tuning (we use the term fitness across all three auto-tuning techniques

despite it being a term associated with evolution). The user is looking for the parameter

set that most closely fits their target metrics, so a higher score is desirable. We must also

take into account a second measure for auto-tuning, however, which is the time taken to

run. We initially implemented evolutionary search but despite its good performance we

were concerned that it was taking too long to perform a search that might not require such

complex techniques.

To provide insight into the effectiveness of the three techniques we have described we ran

a short experiment on two different auto-tuning problems, one targeting a single metric and

one targeting two metrics. For the evolutionary search we used a population of size 20,

run for 20 generations with 70 examples generated per run. For the grid search we used 4

samples (for a total of 256 evaluations) and for the random search we used 256 evaluations

to match the grid search. The results of these tests are presented in Figure 4.

Fitness (1 Metric) Time (1 Metric) Fitness (2 Metric) Time (2 Metric)

Evo. 0.914 229.767 0.938 408.195

Grid Sch. 0.909 94.44 0.948 96.652

Hill Climb 0.957 70 0.9402 70

Random 0.905 92.573 0.924 92.35

Figure 4: Results from preliminary auto-tune testing. Evolutionary, Hill Climb and Random

data are averages of five runs (Grid Search always returns the same result). Time ismeasured

in seconds.

We can see that fitness is high for all techniques (fitness is measured in the range [0,1] with

1 being the best possible parameterisation), but that the differences between more complex

techniques and a hill climber or similar random search are not large - although random does

slightly underperform in all cases. We believe there are good reasons for the other two

techniques not performing as well, however. Grid search is a very broad-strokes approach

to parameter optimisation and the best values may often lie between grid settings. Higher

values for the sample rate would work better, but the technique is unable to filter out obvi-

ously useless areas of the search space. It’s understandable that in this scenario, a random

sampling of the space at the same rate might yield better results. This will greatly depend

on the maximum and minimum settings for each parameter - if they are set too widely, then

a grid search spends a lot of time searching useless areas of the parameter space.

We believe that the evolutionary approach is affected by the fact that the fitness evalua-

tion is an average of the output of the generator, which only approximates the centre of

the generator’s space. This space can be large, however, and produce content with widely

different metric scores within the same parameterisation. If the evaluation does not check a

large enough sample of the generators output, it might estimate the average incorrectly and

cause the evolutionary system to move away from fitter areas of the parameter space. This

is largely dependent on the generator and metrics in question - some generators have large

variance in the metric qualities of their output.

The hill climbing approach produces consistently high fitness, and has the additional benefit

– 11–

of being able to cleanly terminate (often early, since we can optionally terminate if a fitness is

found above a certain threshold). We’ve implemented this as the main auto-tuning technique

for now. After user studies and more generators are tested we may revisit our approach here.

Sample Parameterisations

Before we conclude this section, we provide some examples of different parameterisations

of the Cellular Automata Generator after different auto-tuning runs. Note that two different

parameterisations of the generator may result in identical or similar metric scores, so these

are only representative of a single example of the generative space. Figures 4-7 show three

samples each from four different auto-tuned generators, with examples of both single and

double metric targeting. Figure 4 produces open arena-like levels with some corners and

hiding spots. Figure 5 targets lower openness which results in more passages and winding

corridors and less open space. Figure 6 and 7 showmore extreme parameterisation, with the

latter in particular being an interesting example of Danesh producing unusual outputs. Low

openness and low density are somewhat opposed to one another, but the tradeoff Danesh

discovered results in maps with small amounts of single tiles (resulting in low density),

which breaks up open space (resulting in low openness).

FUTURE WORK AND OPEN PROBLEMS

With Danesh, we aim to build a platform where procedural generators of all kinds can be

loaded, analysed, understood and improved in many different ways. There are three key

goals we have in mind when developing the tool further: accessibility, ensuring Danesh has

as low a barrier to entry as possible; power, expanding the capabilities of the system and

enabling it to provide new functionality; and generality, to build an adaptive tool that can

analyse generative systems regardless of their output types or target domains. Currently this

leads us to a few specific points of future work that we outline in this section.

Efficiency Tradeoffs

Analysing a procedural generator requires sampling from it frequently, and some of the

techniques we put forward here such as auto-tuning require sampling a generator thousands

of times. Even thousandsmay not be sufficient to obtain good results. Typically a procedural

generator can output content in a fairly short time, but even a generation time measured in

hundredths of a second can result in many minutes of waiting to perform a simple analysis in

Danesh. The user can already adjust the size of the analysis in order to change how thorough

it is. Longer-term solutions, however, rely on the efficiency of the generator itself and that

may not be possible to circumvent or improve. It’s possible that building a cached repository

of generated output for a parameterisation might save time. Keeping Danesh efficient and

quick to use is an important open problem area.

Metric Catalogues & Automation

Users can already easily add their own metrics to Danesh, and we hope to expand a suite of

provided metrics for common content types or analysis, to give support to users who may

not knowwhat kind of information will be useful to them. This in itself is a large future work

problem for procedural generation research as a whole - what metrics are useful in analysing

generators of certain types of content? How generally applicable are these metrics across

many different algorithms or domains?

– 12–

Figure 5: Samples from a parameterisation targeting openness of 0.8

Figure 6: Samples from a parameterisation targeting openness of 0.5 and density of 0.5

Figure 7: Samples from a parameterisation targeting density of 0.8

Figure 8: Samples from a parameterisation targeting openness of 0.2 and density of 0.2

– 13–

Once a large quantity of default metrics are available, we hope to extend Danesh to be able

to automatically apply metric evaluations to a generator and estimate which metrics offer

the most insight or utility for analysing a particular generator, possibly employing ideas

from information theory (Shannon, 1948) in order to assess metric worth. This would allow

Danesh to propose metric selections for initial ERAs and perhaps automatically guide the

user through the tweaking and improvement process, to identify new areas of the generative

space and how best to move through them.

Generative Space Visualisation

The ’Generate Content’ button currently is the user’s only way to view the output of its

generator under a particular set of parameters. Although metrics and ERA analyses can help

the user understand what a generator is doing, it is also crucial to be able to see the results

of the generator to provide context for these other indirect measurements of the generator’s

performance. Generating a single map at a time is useful as a guide, but we believe it is

important to provide a richer, higher-level method of visualisation.

In related problems such as evolutionary art applications, the visualisation of generator out-

put is achieved by showing a sample of the generator’s output in a grid, allowing the user to

absorb multiple examples of a generator simultaneously and be able to mentally note sim-

ilarities and differences that indicate what space the generator is currently occupying. We

intend to implement a similar function to Danesh, to complement the current ability of the

user to hover over and preview examples from the ERA histogram. We believe that relating

the metrics to example outputs more directly will help the user build a model for what each

metric means in relation to the particular generator they are using.

Automating Parameter Extraction

As a more experimental point of future work, we wish to explore the idea that Danesh can

help the user even with the configuration of Danesh itself. Using a generator with Danesh

will eventually require the tagging of metrics, parameters, visualisation methods and the

generate method itself. While some of these (such as metrics) can be provided by Danesh,

other elements which are crucial to the analysis (such as the parameters) must be identified

by the user before loading Danesh and tagged with the Tunable attribute.

We believe that it might be possible for Danesh to propose new parameters based on a

metaprogramming analysis of the generator’s code. On a simple level, Danesh can identify

public fields within the code and test out each one as a possible parameter whose value can be

varied to change the generator. On a more complex level, Danesh might be able to identify

common use of numbers (sometimes referred to as the ’magic number’ code smell (Martin,

2009), where numbers are inserted into code without variable names or any explanation) and

then extract this value out of the code in multiple places, generalising it into a parameter.

This is quite a tall order and may be infeasible for most generator cases, but it is certainly

an interesting problem to try and solve, as it would allow Danesh to make suggestions to

novice users and automatically identify useful ways it can adjust or change a generator.

This remains a fairly blue-sky area of future work, however. Our initial experimentation

with this suggests it is possible for some simple cases but a difficult problem in general

(with unpredictable side effects for the user).

– 14–

CONCLUSIONS
In this paper we presented Danesh, a Unity tool that can be used to inspect, adjust and anal-

yse procedural generators. We discussed the motivation and plan for the tool, and described

an early version of the software. We showed the current state of the tool’s functionality, and

how this will be expanded in the future, as well as other interesting problems we hope to

examine along the way.

We believe there exists a skills gap in game development concerning procedural generation,

and that this gap is not being bridged by traditional tools. Writing procedural generators is

already a difficult task, but understanding them well enough to tweak and adjust them to a

designer’s liking requires a lot of knowledge that is difficult to obtain. Other comparably

complex (arguably even more complex) tasks such as writing graphics shaders have been

made considerably easier thanks to intuitive and useful tools. We hope the same can be done

for procedural generation, and that Danesh contributes towards this goal in some small way.

Procedural generation is often seen as a simple case of ’more unpredictable stuff’, content

that can be thrown into a game for endless replay value without much thought. But gen-

erative techniques are increasingly a key tool in achieving certain design goals, expressing

artistic ideas, and developing new genres of game. In order to promote this growth and di-

versity, we need to support developers, students, dabblers and novices of all kinds, to ensure

this technology is as flexible and accessible as possible.

ACKNOWLEDGMENTS
Thanks toGillian Smith formany discussions of procedural generation and expressive range.

Many thanks to Adam Summerville for supplying the LaTeX template for this paper.

BIBLIOGRAPHY
CaptainKraft. Create a Procedurally Generated Dungeon Cave System. Published by Tut-

sPlus, available online at http://tinyurl.com/pcgtut

Cook, M. Generate Random Cave Levels Using Cellular Automata (2013) Published by

TutsPlus, available online at http://tinyurl.com/pcgtut2

Craveirinha, R., Santos, L., Roque, L. An Author-Centric Approach to Procedural Content

Generation. In Proceedings of the 10th International Conference in Advances in Computer

Entertainment Technology, 2013.

Hello Games (2016) No Man’s Sky [PC, PlayStation 4] Hello Games.

Khaled, R., Nelson, M., and Barr, P. Design Metaphors for Procedural Content Generation

in Games. In the Proceedings of CHI ’13, 2013.

Liapis, A., Yannakakis, G. N., Togelius, J. Designer Modeling for Sentient Sketchbook.

In Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG),

2014.

Martin, Robert C, (2009). ”Chapter 17: Smells and Heuristics - G25 Replace Magic Num-

bers with Named Constants”. Clean Code - A handbook of agile software craftsmanship.

Boston: Prentice Hall.

– 15–

http://tinyurl.com/pcgtut
http://tinyurl.com/pcgtut2

Mossmouth Games (2008) Spelunky [PC] Mossmouth Games.

Pedregosa et al. Scikit-learn: Machine Learning in Python. JMLR 12, pp. 2825-2830, 2011.

Roguebasin. RandomWalkCaveGeneration. (2014)Available online at http://tinyurl.
com/pcgtut3

Shannon, C. E. A Mathematical Theory of Communication. In The Bell System Technical

Journal vol. 27, no. 3, (1948) pp 379–423

Smith, G. and Whitehead, J. Analyzing the Expressive Range of a Level Generator. In

Proceedings of the 2010 Workshop on Procedural Content Generation in Games.

Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley and Cameron Browne (2011):

Search-based Procedural Content Generation: A Taxonomy and Survey. IEEE Transactions

on Computational Intelligence and AI in Games (TCIAIG), volume 3 issue 3, 172-186.

– 16–

http://tinyurl.com/pcgtut3
http://tinyurl.com/pcgtut3

