
Towards Procedural Generation As Gameplay:
CLAY and Tombs of Tomeria

Michael Cook and Simon Colton
The Metamakers Institute

Games Academy

Falmouth University

Proceedings of 1st International Joint Conference of DiGRA and FDG

©2016 Authors. Personal and educational classroom use of this paper is allowed, commercial use requires

specific permission from the author.

ABSTRACT
Procedural generation is a popular tool for generating large quantities of content for games,

but its function as a mechanic is largely underexplored. In this paper we describe CLAY and

Tombs Of Tomeria, two games in which the player can reparameterise a level generator as

a means of exploration. We describe the motivation for the work, the design challenges in

using procedural generation in this way, and discuss future problems and opportunities with

using generative techniques as game mechanics.

Keywords
procedural generation, game design

INTRODUCTION
Procedural generation is now a fundamental part of the language of game design, a tool

that can be used to challenge players (Mossmouth Games, 2008), create atmosphere (Hello

Games, 2016) or spur creativity (Mojang, 2009), as well as simply extending the length of a

game. Despite the increasingly commonplace nature of procedural generation in games, it is

largely applied for the same ends in most games – usually the production of endless content

for the player to encounter, a one-way process in which the user is a passive consumer.

Many other kinds of game technology eventually made the leap from tool to mechanic.

Physics engines, for example, first appeared in games adding heightened sense of realism

and verisimilitude to game worlds. But they were soon repurposed to become the point

of the game - the term ‘physics-based game’ now describes a large and popular genre of

game. In (Treanor et al., 2015) the authors coin the term AI-based game and suggest that AI

techniques might make a similar transition to become the driving force for a game’s design

(and show examples of games where this is already the case). Procedural generation has yet

to make such a leap in a meaningful way, however.

In this paper we describe the development of two games - CLAY and Tombs of Tomeria

- in which the primary game mechanic involves taking control of a procedural generator.

We describe the development process of these games, we evaluate the use of procedural

generation as a game mechanic, and we discuss the ongoing development of this idea in

both Tombs of Tomeria and future prototypes. The remainder of this paper is organised as

follows: in BACKGROUND we describe the notion of AI-based game design and discuss

games which have historically tried to involve the player in generative systems; inCLAY we

describe a jam game which was the basis for our work in the area; in TOMBS OF TOMERIA

we describe a larger follow-up game we are developing that expands on these ideas and tries

to adapt them into a more focused game design; in DISCUSSION we identify some lessons

learned through developing this games and outline areas we hope to develop further.



BACKGROUND

In (Treanor et al., 2015) the authors propose the notion of AI-based game design, in which

a core part of a game’s design is foregrounded AI - AI systems that the player is aware of,

can reason about, and can interact with. One example of such a game would be Spy Party,

a multiplayer game in which one player must mimic the actions of other AI agents while a

second player tries to distinguish the human avatar from the crowd. Both players must think

about the way in which computer-controlled characters act, and how that behaviour differs

from how a human might act. Interaction with, and understanding of, AI systems is funda-

mental to gameplay. The work in (Treanor et al., 2015) heavily influenced the development

of these prototypes, as we are in effect foregrounding procedural content generators in the

game.

Some games frame the exploration of generative space as part of gameplay. In Inside A Star-

Filled Sky the player can ‘enter’ any enemy they encounter, and the shape of the enemy

dictates the shape of the level they enter, which itself contains enemies. This recursive

process of going to higher and lower levels is a way of exploring a vast interconnected

space produced by a generator, albeit in a way largely disconnected from the generative

process.

Endless Web is the game which most strongly exemplifies the idea of using procedural gen-

eration as a game mechanic (Smith et al., 2012). Endless Web is a platformer where each

level is a procedurally generated mix of different challenge elements. By taking certain ex-

its from a level, the next level is generated under different parameters, allowing the player

to explore the generative space figuratively as well as literally (this exploration ties into an

in-game map). Endless Web is a major inspiration for the games we describe here.

CLAY

CLAY is a game prototype developed for the 2015 AI Jam. You play as an astronaut reac-

tivating drones stationed in a hollowed-out planet. You explore the planet, collecting jump

packs and reactivating as many drones as possible, before returning to your ship. The player

achieves this by using buttons to control the shape and size of the planet’s remains. Pressing

certain buttons increases the density and quantity of matter in the level, while other buttons

reduce it. The player can preview changes before they apply them, allowing them to plan a

route through each level to activate drones and safely get back to their ship. Figure 1 shows

a screenshot of the game, which can be played for free online1.

Levels are generated using a cellular automata generator. A level is initially randomly

seeded with solid and empty tiles, and then the level generator goes through several iter-

ations of applying rules to the grid of tiles. Depending on the tile’s state (either solid or

empty) and the number of solid neighbours it has, an iteration may switch a tile state from

solid to empty or vice versa. Over time, sparse groups of tiles coalesce into solid walls and

organic shapes begin to form. The formation of these solid areas, how large they are, how

many individual solid areas they form and so forth are governed by several parameters, the

most important of which we describe below.

1. https://cutgarnetgames.itch.io/clay

–2–



Figure 1: A screenshot from CLAY.

• Initial Random Chance (IRC): When seeding a map initially, how likely is a given

tile to start solid? A higher IRC results in a denser map overall.

• Number Of Iterations (NOI): The number of times the birth/death rules are applied

to the grid. Generally, more iterations results in a smoother level layout.

• Birth Limit (BL): If a tile is empty, and it has at leastBL solid neighbours, it becomes

solid.

• Death Limit (DL): If a tile is solid, and it has fewer than DL solid neighbours, it

becomes empty.

In CLAY, the player has control over two of these parameters: the initial random chance,

and the number of iterations. They can adjust the IRC by 5% at a time, and adjust the

number of iterations by 1 at a time. Each time they attempt to make an adjustment, they are

shown a preview of what the resulting level will look like, before confirming the change.

Figure 2 shows a screenshot of this preview process. The play can then cancel the change,

or confirm it, leading to a fade-out while the level regenerates and then places the player

back in it. Because the player starts at the top of the level and must also exit from there

too, traversing back up the level is an important part of gameplay, and so the limited jump

boosts combine with the ability to change the level structure to help the player get back up

the level.

Feedback from players of CLAY was generally positive – they enjoyed using the generative

controls to explore the level, and moving back and forth between denser and more open

states was a satisfying kind of generative puzzle. Some users noted that the slow process

of switching between preview states and regenerating the level discouraged them from ex-

perimenting more. We also had personal concerns about the game mechanic - firstly, that it

gave the player too much control over the level, which made it hard to make navigation a

–3–



Figure 2: A screenshot from CLAY showing a preview of a change to the level.

Grey areas will be solid after a change, non-grey areas will be empty.

challenge once the concept had been grasped. Second, that it was hard to convey what you

were doing when controlling the level design. Even with the sci-fi narrative, it was unclear

what it meant to increase the amount of solid space around you (the game contextualises it

as ‘terraforming’ and describes the processes as density and erosion). The mechanic was

hard to explain to the player, and as a result it felt artificial.

TOMBS OF TOMERIA

Tombs of Tomeria (henceforth just ‘Tombs’) is a 2D platformer set in a series of under-

ground tombs, in which the player must navigate through a shifting landscape in search of

treasure. Levers and switches are scattered throughout the level, and activating these cause

the walls of the tomb to shift and change, revealing new passageways or cutting off existing

ones. Figure 3 shows a screenshot from the game, the latest public version of which can be

downloaded for free online2.

Tombs was designed as a successor to the ideas prototyped in CLAY. The objective with

Tombs was partly to design a bigger and more developed game using the same principles,

but we also changed the way the procedural generator was integrated into the game in order

to improve the relationship between the player and the generator-driven mechanics.

The most fundamental change was to remove the player’s ability to freely change the level

parameters at any time. Instead of a universal power over the generator at all times, the

player has to track down specific places where interaction with the world is possible, pri-

marily in the form of levers. This reduces the scope of the player’s control over the world,

but also focuses it so that changing the level is a more meaningful action. It’s also much

easier to explain and understand – the player is causing the walls of the tomb to shift in and

out by activating machinery. They can see that the walls are always present in the back-

2. http://cutgarnetgames.itch.io/tombs-of-temeria

–4–



Figure 3: A screenshot from Tombs Of Tomeria. The switches allow the player

to change the level.

Figure 4: Pulling a lever in Tombs of Tomeria to reveal a new path.

ground, so solid space doesn’t disappear and reappear as it did in CLAY, instead it simply

recesses itself temporarily, allowing the player to pass by.

Limiting where and how the player can interact with the world also makes this knowledge

available to the level designer at runtime, which means that Tombs can calculate at the

beginning of a level where the player can go and what levers are accessible to them. While

this is theoretically possible in CLAY, the state space is vast - since the level can be altered

in any way, at any position, and can conceivably be in a large number of configurations

before a change. In Tombs, changes are limited and easily enumerable. This allows Tombs

to become a puzzle game in a more literal way than CLAY - if there are four levers in

the world, what sequence do the levers need to be pulled in to reach the exit? Because

pulling a lever may cut off some areas of the map while enabling access to others, different

sequences of levers may be required to access other parts of the map with levers that have

more powerful effects. Tombs can calculate these paths before the game begins, evaluating

how hard a level is to solve based on how many levers have to be pulled and in what order,

or how many potential dead-ends the player might encounter.

–5–



In order to calculate these paths, and also to improve the speed with which we respond to

changes to the level, we compute all possible states the game level can be in before the game

begins. We begin by selecting a random seed for the level, since this is needed to remain

consistent when reparameterising the generator. Then we calculate every combination of

parameter settings it is possible be in. Since we use fixed steps for each lever pull (the

same 5% IRC and 1 iteration differences we used for CLAY) and we define upper and

lower bounds on parameter values, this is a finite list. A level in Tombs has 42 different

instantiations given the current parameter steps and upper and lower bounds. We discuss

the implications of this precomputation step in the later discussion section.

Tombs currently creates levels in a random fashion, which is to say it places the player start,

exit and levers in random positions in the game world. It then tests to see if the level is

solvable, and if it isn’t it restarts with a new seed. To test for solvability we perform an

A* search not through the physical space of the level, but through the meta-level space of

possible game states. In this meta-space a vertex represents a particular configuration of

the game. The information stored for each vertex is a list of levers in the level and their

status (switched left or right), and the position of the player. Instead of storing the specific

location of the player, we instead store which ‘chamber’ they are in (a chamber being a

self-contained empty space in the level, such as the one the player is in in the first image in

Figure 5).

An edge between two vertices in the meta-level graph means that the player can access a

lever from their current chamber which transforms the game state into a new state. The A*

search to test for solvability simply tests to see if the game state can be transformed from

its original configuration, to one in which the player and the exit exist in the same chamber,

meaning that the player has managed to reach the exit and complete the level. To avoid

trivial levels being generated, we only accept solutions with three or more lever pulls in

their solution.

While this process of checking a level is relatively straightforward, it is imperfect. For one

thing, the solver assumes perfect play yet it is very easy for the player to get stuck down a

crevasse and unable to get out. Spelunky is a notable example of a game which designed

around this problem by allowing the player a limited ability to blow up walls and throw

ropes up to climb from pits, and we are considering similar techniques for Tombs (perhaps,

in keepingwith the design, a limited number of explosive charges which reduces or increases

one of the parameters at random). The solver can also miscalculate the player’s ability to

jump to certain areas due to an imperfect representation of the game’s physics system, which

is another area we are seeking to improve.

DISCUSSION

Development on Tombs is still ongoing, but working on both it and CLAY has led to some

initial ideas about the use of procedural generation as a game system which we share here

both as points of discussion and ideas that are shaping our future work in the area.

Power

Procedural content generation is often used in games to produce large quantities of criti-

cal game content that defines the player’s progression through game systems (such as the

–6–



Figure 5: Three stages of a level in Tombs being solved.

generation of items, enemy placements, or environments to explore). Allowing the player

control over such systems can in some cases be akin to allowing them control over the very

nature of the game’s challenge or purpose. CLAY is an example of a game which failed to

properly check this, and as such the player was given the ability to trivialise the game if they

so wished.

We consider this an interesting result in itself –after all, exploring the generative space of

a procedural generator can be a playful experience and some players did report that simply

drifting through space and moulding the world was interesting to them. However, this is an

important point to bear in mind for designers wishing to produce specific kinds of challenge

for the player. Tombs shows how the power of controlling a procedural generator can be

limited in interesting ways, and we hope to pursue both the playful and puzzling aspects of

this in future work.

Tractability

Procedural generation is typically employed at large scales, with very large generative and

parametric spaces involved. When content is produced and used with little filtering or test-

ing, this scale is useful as it provides a sense of unpredictability and an endless source of

low-level novelty. In the context of games like CLAY and Tombs, however, the need to

reason about the generative space means that the scale of procedural generators must be

controllable in some way. In Tombs we set limits on the extent to which parameters could

be changed and fixed intervals for how much they could be changed at a time, allowing us

to limit the player’s influence over the generator to a reasonable space which is amenable

to analysis while still being interesting to the player.

As with questions of power, clearly for many kinds of design tractability will not be a factor.

The unpredictability of the player’s control may factor into a playful or creative interaction

with procedural systems, for example. Our observations here are not intended to be univer-

sal for all game designs or designer aims, but instead are most relevant for designs where

foreknowledge of the player’s abilities is important. For our prototypes, being able to reason

about the limits of player control is important, and we hope to explore the tradeoff of player

freedom versus analysis tractability in the future.

–7–



Understanding

While procedural generators are commonly accepted as game components among many

people who play games, controlling them so directly is something less often encountered.

Most controllable generators are one-shot content generators which are configured once

and then run at the start of a game (such as a world generator in Civilisation). To further

complicate things, the control we allow the player in CLAY and Tombs involves directly

influencing parameters normally expressed through code. Explaining what these are, why

the player can control them, how they should do so and so on are all difficult to do, and

we do not feel our initial attempts through CLAY were entirely successful. The theme of

the game did not entirely explain to the player what process they were controlling, and the

interface with which they interacted with the system was too complex.

While we are interested in improving player understanding and accessibility in the future,

we are also interested in studying player experiences in games like Tombs. Such studies

have obvious benefits in that they show whether the games are successful in explaining

themselves to the player, but we are also interested in how the player’s mental model of the

procedural generator develops as they play the game. We believe that games like Tombs

could become a tool for explaining generative systems to a user in an interactive way, by

asking them to understand how generative space can be manipulated to achieve a goal.

CONCLUSION

In this paper we described two prototype games, CLAY and Tombs of Tomeria, in which

the gameplay is driven by foregrounding a procedural content generator and allowing the

player control over its parameters. We discussed the progression from our first prototype to

our second, and outlined discussion points raised from the work that will pay into expanding

these ideas in future.

BIBLIOGRAPHY

Mossmouth Games (2008) Spelunky [PC] Mossmouth Games.

Hello Games (2016) No Man’s Sky [PC] Hello Games.

Mojang (2009) Minecraft [PC] Mojang.

Smith, G., Othenin-Girard, A., Whitehead, J., & Wardrip-Fruin, N. (2012, May). PCG-

based game design: creating Endless Web. In Proceedings of the International Conference

on the Foundations of Digital Games (pp. 188-195). ACM.

Treanor, M., Zook, A., Eladhari, M. P., Togelius, J., Smith, G., Cook, M., Thompson, T.,

Magerko, B., Levine, J. & Smith, A. (2015). Ai-based game design patterns. In Proceedings

of the 10 International Conference on Foundations of Digital Games, FDG.

–8–


