
Nobody’s A Critic:
On The Evaluation Of Creative Code Generators

– A Case Study In Videogame Design
Michael Cook, Simon Colton and Jeremy Gow

Computational Creativity Group, Imperial College, London

Abstract

Application domains for Computational Creativity projects
range from musical composition to recipe design, but despite
all of these systems having computational methods in com-
mon, we are aware of no projects to date that focus on pro-
gram code as the created artefact. We present the Mechanic
Miner tool for inventing new concepts for videogame inter-
action which works by inspecting, modifying and executing
code. We describe the system in detail and report on an eval-
uation based on a large survey of people playing games using
content it produced. We use this to raise issues regarding the
assessment of code as a created artefact and to discuss future
directions for Computational Creativity research.

Introduction
Automatic code generation is not an unusual concept in
computer science. For instance, many types of machine
learning work because of an ability to generate specialised
programs in response to sets of data, e.g., logic programs
(Muggleton and de Raedt 1994). Also, evolutionary systems
can be seen to produce code either explicitly, in the case
of genetic programming, or implicitly through evolutionary
art software that uses programmatic representations to store
and evaluate populations of artworks. Moreover, in auto-
mated theory formation approaches, systems such as HR
(Colton 2002) generate logic programs to calculate mathe-
matical concepts. These programs are purely for represen-
tation, however, rather than in pursuit of creative program-
ming. In software engineering circles, ‘metaprogramming’
is used to increase developer efficiency by expanding ab-
stract design patterns, or to increase adaptability by refor-
matting code to suit certain environments. None of these
instances of code generation fully embrace the act of pro-
gramming for what it is – a creative undertaking. There can
be no field better placed to appreciate programming in this
way than Computational Creativity.

Building software that can generate new software, or
modify its own programming, opens up huge new areas for
Computational Creativity, as well as enriching all existing
lines of research by allowing us to reflect on our systems
as potential artefacts of code generators or modifiers them-
selves. We attempt here to highlight some of these future
opportunities and challenges by describing the design of a
prototype system, Mechanic Miner (Cook et al 2013), which
designs a particular videogame element – game mechanics
– by inspecting, modifying and executing Java game code.

Mechanic Miner produced game mechanics for A Puz-
zling Present, a platform game released in December 2012
and downloaded more than 5900 times. This game included
survey and logging code to assess, among other things, the
quality of the mechanics generated by Mechanic Miner in
terms of perceived enjoyability and the challenge in using
them. In analysing the data and evaluating the system, how-
ever, we have noticed issues with current notions of assess-
ment within Computational Creativity research, and how
they interact with the idea of evaluating a creative system
whose output is program code. We explore these issues be-
low. In this paper we make the following contributions:

• We describe the development of a creative system that
generates code as its output.

• We report on the first large-scale experimental evaluation
of interactive computationally-created artefacts.

• We discuss issues involving the assessment of creative
systems working in media with a high barrier to entry.

The rest of this paper is organised as follows: in Mechanic
Miner – Overview we describe Mechanic Miner in full, de-
tailing how it generates and evaluates new game mechanics
through code. In A Puzzling Present – Evaluation Through
Play we describe A Puzzling Present, a game designed and
released using mechanics invented by Mechanic Miner. We
discuss the difficulties in evaluating interactive code, how a
balance can be struck between presenting a survey and offer-
ing a natural experience to the user, and present some results
from our survey. In the section Creativity in Code Genera-
tion, we highlight issues for the future of code generation, as
well as promising opportunities for Computational Creativ-
ity. in Related Work we briefly describe previous approaches
to mechanic generation and highlight why code generation
is necessary to advance in this area. Finally, in Conclusions
we review our achievements and reflect on where our work
with game mechanics will lead next.

Mechanic Miner – Overview
Definitions
Many conflicting definitions exist for game mechanics, as
described, for instance, in (Sicart 2008), (Kelly 2010) and
(Cook 2006). For our purposes here, we define a game me-
chanic as a piece of code that is executed whenever a button
is pressed by the player that causes a change in the game’s
state. How a game mechanic is defined in code will vary

1



from game to game, depending on the architecture of the
game engine, the way the game has been coded within that
engine, and the idiosyncrasies of the individuals who wrote
the rest of the game code. For example, below is a line of
code from a game written in the Flixel game engine. Execut-
ing the code causes the player character to jump, by adding
a fixed value to its velocity (the player’s gravity will coun-
teract this change over time and bring the character to the
ground again).

player.velocity.y -= 400;

Mechanic Miner generates artefacts within a subspace of
game mechanics, which we have called Toggleable Game
Mechanics (TGMs). A TGM is an action the player can take
to change the state of a variable. That is, given a variable
v and a modification function f with inverse f−1, a TGM
is an action the player can take which applies f(v) when
pressed the first time, and f−1(v) when pressed a second
time. The action may not be perfectly reversible; if v is
changed elsewhere in the code between the player taking
actions f and f−1, the inverse may not set v back to the
value it had when f was applied to it. For instance, if v
is the player’s x co-ordinate, and the player moves around
after applying f , then their x co-ordinate will not return to
its original value after applying f−1, as it was modified by
the player moving.

Generation Mechanic Miner is written in Java, and there-
fore able to take advantage of the language’s built-in Reflec-
tion features that allow program code to inspect and explore
other code1. For example, the following code retrieves a list
of fields of a given class:

MyClass.getClass().getFields()

Such Field objects can be manipulated to yield their name,
their type, or even passed to objects of the appropriate type
to find the value of that field within the object. Java has simi-
lar objects to represent most other language features, such as
Methods and generic types. Given the definition of a TGM
above, we can see that Reflection allows software to store
the location of a target field at runtime, and dynamically al-
ter its value. Using the Reflections library, Mechanic Miner
can therefore obtain a list of all classes currently loaded, and
iterate through them asking for their available fields. It can
use information on the type of each field to conditionally
select modifiers that can be applied to the field.

Java’s Reflection features do not provide encapsulation
for primitive operations such as mathematical operators, as-
signment or object equality. To solve this problem, we cre-
ated custom classes to represent these operations, which
enabled Mechanic Miner to select modifiers for a field
that could be applied during evaluation. Thus, a TGM is
composed of a java.lang.Field object, and a type-
specific Modifier. For example, a mechanic that dou-
bled the x co-ordinate of the player object would use
the org.flixel.FlxSprite object’s x field, and an
IntegerMultiplyModifier defined as follows:

1We further extended this core functionality by employing the
Reflections library from http://code.google.com/p/reflections.

Figure 1: A sample level used to evaluate mechanics.

public void apply(Field f){
if(toggled_on){
f.setValue(f.getValue()*coefficient);
} else{
f.setValue(f.getValue()/coefficient);
}

}

Where coefficient is set to 2 in the case of doubling,
but can be set by Mechanic Miner to an arbitrary value as
it evaluates potential mechanics. Note the use of a boolean
flag, toggled_on, to retain the state of the TGM so that
its effect can be reversed. Modifiers were selected to give
a coverage of key operations that might be performed on
fields, such as inverting the value of a boolean field, adding
or multiplying values for a numerical field, or setting numer-
ical fields to exact values (such as zeroing a field, and then
returning it to its original value). Future extensions we plan
to the generation process will allow for the use of mathe-
matical discovery tools such as HR (Colton 2002) that could
invent calculations which transform the values of the fields.

Evaluation In order to evaluate generated mechanics, we
need strong criteria that describe the properties that desirable
mechanics should have. In the version of Mechanic Miner
described here, we focus purely on the utility of a mechanic
(that is, whether it affords the player new possibilities when
playing the game) rather than how fun the mechanic is to
use, how easy it is to understand, or how appropriate it is
for the context. Utility is not only easy to define, but can be
defined in absolute terms, which provides a solid target for
a system to evaluate towards.

To illustrate how utility can be identified by Mechanic
Miner, consider the game level shown in Figure 1. The
player starts in the location marked ‘S’ and must reach the
location marked ‘X’, and when they do, we say that the
player has solved the game level. The game operates sim-
ilar to a simple game such as Super Mario; the player is
subject to gravity, but can move left and right as well as
jumping a small distance up. Under these rules alone, the
level is not solvable because the central wall is too high and
impedes progress. Therefore, if we were to add a new game



Figure 2: A level generated by Mechanic Miner for the
‘gravity inversion’ mechanic. The player starts in the ‘S’
position and must reach the exit, marked ‘X’.

mechanic such as the inversion of gravity, and as a result
the level were to become solvable, we could conclude that
the new mechanic had expanded the player’s abilities, and
allowed them to solve a level of this type.

This idea is central to Mechanic Miner’s evaluation of me-
chanics – it uses a solver to play game levels in a breadth-
first fashion, trying legal combinations of button presses
while remaining agnostic to what mechanics the buttons re-
late to. It will continue to search for combinations of button
presses until it finds at least one solution; at this point it con-
tinues looking for combinations of that length, completing
the breadth first expansion of this depth, and will then re-
turn a list of all paths that led to a solution. Hence it can
try arbitrary mechanics without knowing in advance what
the associated code does when executed. This enables it to
firmly conclude whether the mechanic has contributed to the
player’s abilities by assessing which areas of the level are
accessible that were not previously, which in turn enables it
assess the level itself.

Level Generation Mechanic Miner’s ability to simulate
gameplay in order to evaluate mechanics can also be applied
in reverse to act as a fitness function when generating levels
for specific mechanics using evolutionary techniques. Rep-
resenting a level design as a 20x15 array of blocks that are
either solid or empty, we can evaluate the fitness of a level
with respect to a mechanic M by playing the level twice –
once with only the basic controls available, and once with
M added to the controls. If the level is solvable with M , but
not solvable without it, then the level is given a higher fit-
ness. Using a binary utility function as our primary evalua-
tion criteria strengthens the system’s ability to provide exact
solutions to the problem – either the level is completed, or it
is not. In order to have a gradient between the two so that the
evolutionary level designer can progress towards good lev-
els, we moderate the fitness based on what proportion of the
level was accessible. Thus, over time, levels that are more
accessible emerge until eventually the exit is reachable from
the start position (and thus the level is solvable).

Figure 2 shows a level generated for use with a mechanic
called gravity inversion. Activating the mechanic would

cause gravity to pull the player towards the ceiling instead
of the floor. Activating it again would reverse the effect.
Note that the level is not solvable without this mechanic, as
the platforms are too high to jump onto.

The simulation-driven approach to level design allowed
for the resulting software to be highly parameterised. Infor-
mation such as the minimum number of distinct actions re-
quired to solve a level (where each button press is considered
a distinct action) or the number of times a mechanic must be
used, allowed the system to generate levels with different
properties. It also allows the system to remain blind to the
mechanic it is designing for. This allows Mechanic Miner to
exploit created mechanics without having a human intervene
and describe aspects of the mechanic to it, giving it greater
creative independence as it is theoretically able to discover a
wholly new mechanic in a H-creative way, and generate lev-
els for that mechanic without any assistance. We can view
this within the creativity tripod framework of (Colton 2008),
which advocates implementing skill, appreciation and imag-
ination in software. In particular, we see the ability to use
output from one system to inspire creative work in another
without external assistance as an example of skill as well as
an appreciation of what makes a game mechanic useful to
the player. We also claim that simulating player behaviour
is in some sense imagining how they would play.

Illustrative Results
Below are examples of mechanics generated by Mechanic
Miner. All of the effects can be reversed by the player:

• An ability to increase the player’s jump height, allowing
them to leap over taller obstacles.

• An ability to rubberise the player, making them able to
bounce off platforms and ceilings.

• An ability to turn gravity upside down, sucking the player
upwards.

These mechanics are evident in commercially successful
games, such as Cavanagh’s VVVVVV which featured grav-
ity inversion as a core mechanic. Bouncing was an unex-
pected result for us, as we had no idea it was in the space
of possibilities, although it has been featured in some games
developed in other engines, particularly Nygren’s NightSky.
Cavanagh has received multiple nominations in the Indepen-
dent Games Festival (IGF), and NightSky was shortlisted for
Excellence In Design and the Grand Prize in the 2009 IGF.

Novel game mechanics are highly prized in game design
circles. Many international design awards have tracks for
innovative gameplay or mechanics (such as the IGF Nuovo
Award2) and game design events often centre around the cre-
ation of unique methods of interaction (such as the Experi-
mental Gameplay Workshop3). Mechanic Miner’s ability to
reinvent existing but niche mechanics is encouraging, given
the small design space the system currently has access to.

As well creating mechanics, Mechanic Miner was also
able to find exploits in the supplied game code, and use

2http://www.igf.com/
3http://www.experimental-gameplay.org/



them to create emergent gameplay – something which we
had not anticipated as a capability of the system. One me-
chanic, which teleported the player a fixed distance left or
right, was used by Mechanic Miner to design levels which
at first glance had no legal solution. After inspecting the
solution traces produced by the simulator, it became clear
that the mechanic was being used in an innovative way to
take advantage of a weakness in the code that described the
player’s jump. Jumping checked if the player’s feet were in
contact with a solid surface. By teleporting inside a wall,
this check would be passed, and the player could jump up-
wards. Repeated applications of this technique allowed the
player to jump up the side of walls – complicated exploita-
tion of code, more commonly seen in high-end gameplay
by speedrunners4, i.e., gamers who compete over finding
exploits in popular videogames to help them complete the
games in the shortest time possible. For example, speed
runs of the popular puzzle game Portal involve the abuse
of 3D level geometry to escape the level’s boundaries and
pass through solid walls.

A Puzzling Present - Evaluation Through Play
To evaluate some of the mechanics and levels designed by
the Mechanic Miner system, we developed a short compila-
tion game featuring hand-selected mechanics, titled A Puz-
zling Present (APP). APP was released in late December
2012 on the Google Play store and desktop platforms5. The
objective was to conduct a large-scale survey of players in
order to gain feedback on the types of mechanic generated
by the system, in addition to evaluating different metrics for
level design. However, we were also conscious that inter-
ruptions to play, or overt presentation of the software as an
experiment rather than a game, may deter players from com-
pleting levels or giving feedback and/or change the nature of
the experiment, which is to ask their opinion on games, not
surveys. In designing APP, we therefore made several trade-
offs to balance these two factors.

All play sessions were logged in terms of which buttons
the player presses, at what times, which can be used to fully
replay a given player’s attempt at a level. In addition to
this, upon starting the game for the first time, the player
was asked to opt-in to short surveys after each level. These
took the form of two multiple-choice rating tasks on a 1-4
scale, evaluating enjoyability and difficulty. Figure 3 shows
the survey screen. This presented itself to the player upon
reaching the exit to a level, assuming the player had agreed
to respond to surveys, although even in this case, they could
continue without responding to the survey.

75614 sessions were recorded in total, over 5933 unique
devices. When asked to opt-in to surveys, 60.7% of users
agreed. Those who opted-in contributed 63.4% of the to-
tal session count. 92.3% of sessions played by opt-ins re-
sulted in at least one of the two questions being answered,
with 89.9% of sessions resulting in both questions being
answered. Although the survey questions provided a rich
source of data, by allowing us to gain qualitative evaluations

4Such as the community at http://speeddemosarchive.com/
5Download from www.gamesbyangelina.org/downloads/app.html.

Figure 3: Survey screen from A Puzzling Present

of the levels and game mechanics, the log data (which is
recorded for all players) is equally valuable, and so allow-
ing players who did not wish to participate in the survey
to continue to play the game (or those who initially agreed
to change their minds later) we gained an additional 32,000
level traces which we otherwise might have lost.

APP contained thirty levels, split into sets of ten that share
a common mechanic. The three game mechanics are those
described in the Illustrative Results section above: higher
jump, bouncing and gravity inversion. Each level required
the game mechanic to be used to complete it, but were gener-
ated using differing metrics for difficulty expressed through
evolutionary parameters within the level designer. These
were broken down as follows: two levels used a baseline set-
ting determined through experimentation (‘Baseline’); two
levels put stricter requirements on minimum reaction times
needed (‘Faster Reaction’); two levels selected for longer
paths from start to exit (‘Longer Path’); two levels selected
for more mechanic use in the shortest solutions (‘Higher
Mechanic Use’); and two levels selected for longer action
chains in the solution. This provided a variety of the levels
for the player to test, and allowed us to analyse feedback data
to assess these metrics for future use. In order to mitigate
bias or fatigue introduced as a result of experiencing cer-
tain levels or sets of levels before others, the order in which
a particular player experienced the levels was randomised
when the game was first started up. This was done by first
randomising the order of the game mechanics, and then ran-
domising the order of the ten levels within that set, thereby
ensuring that all levels which share a mechanic are experi-
enced together, to provide a more cohesive experience.

Figure 4 shows the mean difficulty and fun ratings for
the nth level played as the people progressed through the
30 levels. These mean ratings remained fairly consistent
throughout the game, with the exception of the 30th level.
As levels were presented randomly, we assume this is an ef-
fect of the very low number of people still playing at this
point. This consistency indicates that learning or fatigue did
not seem to have much effect on player experience. This
may be down to the interactivity of the artefact in question,
and raises the question of whether the evaluation of created
artefacts is more consistent when the survey participants are
interactively engaged. We discuss this later as future work.



Figure 4: Mean fun (white circles) and difficulty (black cir-
cles) ratings for the nth level played.

●

●

●

●

●

●

●

●

●

●

1.00

1.25

1.50

1.75

2.00

1.8 1.9 2.0 2.1 2.2 2.3
Mean fun

M
ea

n 
di

ffi
cu

lty world
● Invert gravity

High jump
Bounce

Figure 5: Mean level fun and difficulty, broken down by
‘world’ (a group of levels that share a mechanic).

The number of players completing a given set (world) of
ten levels for a certain mechanic is consistent across the
three game mechanics; 2259 completed World one, 2151
completed World two and 2219 completed World three. The
data show no bias towards players not completing any par-
ticular one of the three worlds, suggesting that players left
due to general fatigue with the system as a whole, rather
than the content generated by Mechanic Miner. This may be
down to the human-designed elements of the game that were
common throughout the three worlds – such as the interface,
control scheme, or artwork – and therefore not attributable
to the output of Mechanic Miner.

Under statistical analysis of the survey scores, we found
a moderate and highly significant rank correlation between
mean difficulty and enjoyability (Spearman’s ρ = 0.56,
p = 0.002). The relationship between the difficulty of a

Group Mean Fun Mean Difficulty
High Jump 1.96 1.38
Invert Gravity 2.02 1.55
Bounce 2.03 1.42
Baseline 1.96 1.30
Faster Reaction 2.01 1.51
Longer Path 1.95 1.20
Higher Mechanic Use 2.03 1.60
Longer Solution 2.06 1.66

Figure 6: Mean level fun and difficulty, broken down by
game mechanic and level design parameters.

level and the perceived enjoyability of a level is an inter-
esting one to consider. While we might expect an inverse
relationship for an audience who are easily frustrated with
games, we also see many examples of games in which chal-
lenge correlates to an enjoyable game. We postulate that the
correlation between mean difficulty and enjoyability exists
here because the levels are, on average, too easy – the aver-
age difficulty rating across all levels is just 1.45, on a scale
of 1 to 4 – and so an increase in difficulty was welcomed
as it made the levels more interesting. A later study, with
improved difficulty metrics to give a broader spread of skill
levels, would help confirm this hypothesis.

The mean fun and difficulty by world mechanic and level
generation metric are shown in Table 6. Variations in mean
fun are very small between groups, whereas mean difficulty
shows greater separation, especially between the metrics.
An analysis of variance (ANOVA) showed highly significant
(p < 0.001) separate main effects for fun and difficulty with
respect to both factors. There was also a significant interac-
tion between mechanic and metric, which we do not report
here. Post-hoc Tukey’s HSD tests suggested the following
significant differences between groups: a) the mechanics In-
vert Gravity and Bounce are more fun than High Jump; b)
the metrics Fast Reaction, High Use and High Actions are
more fun than Baseline and Longer Path; c) all differences
in mean difficulty between mechanics, and between metrics,
are significant.

Creativity In Code Generation
Nobody’s a Critic
Many different approaches to assessing creativity in soft-
ware have been proposed over the last decade of Compu-
tational Creativity research. Ritchie (2007) suggests that
the creativity of a system might be established by consider-
ing what the system produces, evaluating the artefacts along
such lines as novelty, typicality and quality. This leads to the
proposal of ratios between sets of novel artefacts produced
by a system, and sets that are of high quality, for instance.
While this is helpful in establishing the performance of a
given system, it presupposes both a minimum level of un-
derstanding in those assessing the system, and a direct con-
nection between the means of interaction with the artefact,
and the generated work itself.

In the case of software – particularly interactive media



whose primary purpose is entertainment – we are not guar-
anteed either of these. The consumers of software, such as
those that evaluated A Puzzling Present, are often laypeople
to the world of programming, even if they are highly experi-
enced in interacting with software. More importantly, there
is a disconnect between the presentation of code through
its execution within a game environment, and the nature of
the generated code itself. All software designed for use by
the general public – from word processors to video games
– presents a metaphorical environment in which graphics,
audio and systems of rules come together to present a cohe-
sive, interactive system with its own internal logic, symbols,
language and fiction. In A Puzzling Present in particular,
generated game mechanics operated on obscure variables
hidden away within a complex class structure. To the in-
teracting player, this is simply expressed as objects moving
differently on-screen. This disconnect makes it hard for any
user to properly evaluate the generated code itself, because
they are not engaging with the underlying representation or
mechanics of the software they are using.

Other approaches to evaluation consider the process of
creation itself as crucial to the perception of creativity. In
(Colton, Charnley, and Pease 2011) the authors propose the
FACE model that considers elements of the creative process
such as the generation of contextual information (which the
authors call framing) and the use and invention of aesthetic
judgements that affect creative decision-making. This fo-
cus on the process is a promising alternative to the artefact-
heavy assessment methods that are more common in Com-
putational Creativity, but problems abound here also, since
in order to judge the creative process, a person must be able
to comprehend that process to some degree.

As noted in (Johnson 2012), the majority of the systems
in Computational Creativity have focused on ‘old media’
application domains, such as the visual arts, music and po-
etry. Although the skill ceiling for these media is undeniably
high, they have very low barriers to entry. Most people have
drawn pictures as children, attempted to crack new jokes, or
hummed improvised ditties to themselves. While they may
not exhibit even a small percentage of the virtuosity present
at the top end of the medium in question, by engaging in the
creation of artefacts, they can appreciate the process and are
better placed to comment on it – or indeed they feel so, even
if this is not the case. As a result, creative systems operating
in the realm of old media often find truth in the term ‘ev-
eryone’s a critic’. By contrast, programming is a skill that is
only recently being taught below university level in the west-
ern world; therefore, asking the general public to assess the
creativity of a code generator by commenting on its creative
process is unlikely to result in a useful or fair assessment.

This phenomenon – where nobody is a critic – makes it
hard to apply existing thinking on the evaluation of creative
systems to large-scale public surveys.

Speaking In Code
If neither the artefact-centric nor the process-centric ap-
proach is suitable to assess creative code generators, this
begs the question of how we can proceed in assessing these
systems on a large scale. We believe the key may be one

Figure 7: Framing information in Stealth Bastard.

particular element of the model described in FACE model of
(Colton, Charnley, and Pease 2011), namely framing infor-
mation that describes an artefact and the process that created
it, as explored further in (Charnley, Pease, and Colton 2012).

Code is not designed to be read by people. Extensive ed-
ucation is needed to understand the basics of programming
structure and organisation, including additional time spent
on learning specific languages. Even experienced program-
mers do not rely on these skills alone to understand program
code – instead they leave plain-English comments so that
others, and they themselves, will be able to understand the
meaning of code long after it has been written. In interactive
media, the need to explain features legibly and correctly sit-
uated within the (possibly fictional) context of the software
is especially integral to the user’s understanding and enjoy-
ment of a piece of software. Video games, for instance, rely
on their ability to create an immersive environment where
all functionality is communicated through the fiction of the
game world in question. The arcade game Space Invaders
is not about co-ordinates overlapping and numbers being
decremented – it is about shooting missiles at aliens and pro-
tecting your planet from attack.

This all amounts to a clear need to build into creative
code generation systems the ability to explain the function
of code it produces. This could be done either by annotating
and describing the function of the raw code itself or, in the
case of presenting artefacts to a layperson for assessment
or consumption, by describing the function of the code in
terms of the metaphors and context dictated by the software
the code is part of. In the latter case, this poses interesting
problems more akin to creative natural language generation.
Videogames, for example, must describe the functionality
of game mechanics in terms of what they enable the player
to do within the game world - Figure 7 shows the Stealth
Bastard game (Biddle 2012) explaining how to complete a
level. Note the use of a physical verb (enter), a symbolic
noun (exit) and a reference to meta-game objectives (com-
pleting a level). These are concepts unrelated to the techni-
cal specifics of game code, but crucial to the player’s under-
standing of the thematic and ludic qualities of the game.

The generation of textual descriptions of both the creative
process and the generated code is crucial in enabling these
systems to be assessed by the general public. It will also
become more important in autonomously creative systems
that generate code for use in interactive contexts, where the
meaning of the code must be conveyed clearly to a user. This



is a highly-prized feature of human-designed software6 and
is crucial in autonomously creative systems where artefacts
are not subject to curation prior to their use.

Beyond Software
Considering program code as an artefact produced by a cre-
ative system allows us to reconsider existing creative sys-
tems as potential code generators themselves. Modules
within creative systems might be able to integrate criteria
such as those described in (Ritchie 2007) into a process of
self-exploration and modification – where new code is cre-
ated for generative submodules, and evaluated according to
its ability to produce content along axes such as novelty, typ-
icality or quality. Code generation should not be thought of,
therefore, as a distinct strand of Computational Creativity
that runs alongside other endeavours in art, poetry and the
like. Instead, it should be viewed as a new lens through
which to view existing takes on Computational Creativity,
and a new way to improve the novelty and ingenuity of cre-
ative systems of all kinds.

If generic notions of novelty or typicality for code can
be developed, then they can be applied across mediums
to great effect. Comparisons of code segments have been
explored within verification and software engineering ap-
proaches (Bonchi and Pous 2012; Turon et al. 2013), but
for the purposes of Computational Creativity, a significantly
different approach will be required, as we consider the ludic,
aesthetic and semantic similarities in the output of a piece of
code, rather than its raw data. If this can be done, creative
software will no longer need to be considered static, instead
empowered with the ability to generate new functionality
within itself; creative artefacts will no longer need to be con-
sidered as finished when they leave a piece of software, but
could improve and iterate upon their designs in response to
use; and creative software will no longer be considered sim-
ply executing code written by humans, but instead be seen
to be a collaborator in its own creation.

Related Work
The generation of game mechanics is closely related to
the design of game rules in the more abstract sense.
METAGAME (Pell 1992) is an early example of a system
that attempted to generate new game rulesets. This worked
by varying existing rulesets from well-known boardgames
such as chess and checkers, using a simple grammar that
could express the games as well as provide room for vari-
ation. Grammar-based approaches to ruleset generation are
common in this area, perhaps most prominently seen in Ludi
(Browne and Maire 2010) which evolved boardgame rule-
sets from a grammar of common operations, or work in (To-
gelius and Schmidhuber 2008) and (Cook and Colton 2012)
which present similar work for realtime videogames.

Grammar-based approaches work well because they ex-
plore spaces of games that are defined by common core con-
cepts; but are naturally limited by the nature of the human-
designed grammar as a result. An alternative approach that
can cover a broader space is to use annotated databases of

6E.g., as promoted in Apple’s Human Interface Guidelines

mechanical components, and then assemble them to suit a
particular design problem. Work in (Nelson and Mateas
2007) uses this approach to design games around simple
noun-and-verb input, while (Treanor et al. 2012) use an an-
notated database approach to develop games that represent a
human-defined network of concepts.

Smith and Mateas (2010) present an alternative approach,
describing a generator of game rulesets without an evalua-
tive component. The system they describe uses answer set
programming to define a design space through a set of logi-
cal constraints. Solutions to these constraints describe game
rulesets, therefore if constraints are chosen to restrict solu-
tions to a certain space of good games, solving them will
yield high-quality games. These criteria can be narrowed
down by adding further constraints to the answer set pro-
gram. This can be seen as somewhat related to grammati-
cal approaches – higher-level concepts are defined by hand
(such as ‘character movement’ or ‘kill all’) which are then
selected for use later. This has similar limitations to the
grammatical approaches, in that it is dependent on external
input to define its initial language, and that this restricts the
novelty of the system as a result. The future work proposed
in (Smith and Mateas 2010) was to focus more on program-
matic modification, however, which would have further dis-
tinguished the approach.

Conclusions and Further Work
We have described Mechanic Miner, a code modification
system for generating executable content for videogames,
and A Puzzling Present, a game which we released built us-
ing content generated by Mechanic Miner. We showed that
code can be used as both a source material and a target do-
main for Computational Creativity research, and that it can
lead to greater depth than working with metalevel abstrac-
tions of target creative domains, offering surprise and nov-
elty even on a small scale. Through evaluation of gameplay
responses, we drew conclusions about the presentation of
creative artefacts to large audiences for evaluation. Finally,
we raised the issue of how created artefacts can be evaluated
by an audience which, in general, has no experience in the
domain the artefacts reside within.

This work has also highlighted several areas of future
work needed to expand the concepts behind Mechanic Miner
to prove the worth of the approach in generating more so-
phisticated mechanics and games. These include work to
expand the expressiveness of the code generation, so that it
can include higher-level language concepts such as method
invocation, expression sequences, control flow and object
creation. This will lead to a large expansion of the design
space, which will raise issues of efficiency and evaluation,
also bearing further investigation.

We will also be using our experimental results to tune
both our existing metrics for level and mechanic design, and
to drive further development in systems such as Mechanic
Miner, to increase their autonomy and their ability to seek
out novel content. We are particularly interested in how dif-
ferent difficulty metrics can be combined to produce a di-
verse set of game content.



We will also consider the looming problem of code gen-
eration’s relationship with metaphorical gameplay. Game
designer and critic Anna Anthropy describes games as “an
experience created by rules” (Anthropy 2012). The way
in which this experience is created, however, is deeply
grounded in the player’s ability to connect the systems in-
side a game with the real world. In Super Mario, for in-
stance, eating a mushroom makes you larger, and conveys
extra speed and jumping power. In the game’s code, this is
simply a collision of two objects, and some state changes.
Notions such as size visually indicating strength or ability,
or the idea that consuming food can improve your strength,
are fundamentally connected to real-world knowledge, and
less evident simply by looking at code. Discovering ways
that software can discover these relationships for itself will
be a major hurdle in developing code generators capable of
designing meaningful game content, but also a gateway to
an unprecedented level of creative power for software, and
an opportunity to bring art, music, narrative and mechanics
together in a more meaningful way than ever before.

The field of Computational Creativity was founded on the
belief that computers could be used to simulate, enhance and
investigate aspects of creativity, and researchers have cre-
ated many complex pieces of software by hand. We believe
that the time is ripe to move this a step further, and to turn the
ideas we have developed on our own creations; to reconsider
our artificial artists, composers and soup chefs as pieces of
code that can be assessed, altered and improved at the same
level of granularity that they were created. In order to do so,
however, we may need to challenge some assumptions we
hold about certain creative mediums and the relationship the
general public has with them.

Acknowledgements
We would like to thank the reviewers for their input and sug-
gestions, particularly regarding the discussion section. This
research was funded by EPSRC grant EP/J004049.

References
Anthropy, A. 2012. Rise of the Videogame Zinesters: How
Freaks, Normals, Amateurs, Artists, Dreamers, Drop-outs,
Queers, Housewives And People Like You Are Taking Back
An Art Form. Seven Stories Press.
Biddle, J. 2012. Stealth bastard deluxe.
Bonchi, F., and Pous, D. 2012. Checking NFA equivalence
with bisimulations up to congruence. In Proceedings of the
40th annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, POPL ’13.
Browne, C., and Maire, F. 2010. Evolutionary Game Design.
IEEE Transactions on Computational Intelligence and AI in
Games 2(1):1–16.
Charnley, J.; Pease, A.; and Colton, S. 2012. On the notion
of framing in Computational Creativity. In Proceedings of
the Third International Conference on Computational Cre-
ativity.
Colton, S.; Charnley, J.; and Pease, A. 2011. Computational
Creativity Theory: The FACE and IDEA models. In Pro-

ceedings of the Second International Conference on Com-
putational Creativity.
Colton, S. 2002. Automated Theory Formation in Pure
Mathematics. Springer.
Colton, S. 2008. Creativity versus the perception of creativ-
ity in computational systems. In Proceedings of the AAAI
Spring Symposiumo on Creative Intelligent Systems.
Cook, M., and Colton, S. 2012. Initial results from co-
operative co-evolution for automated platformer design. In
Proceedings of the Applications of Evolutionary Computa-
tion (EvoGames workshop).
Cook, M.; Colton, S; Raad, A; and Gow, J 2013. Mechanic
Miner: Reflection-Driven Game Mechanic Discovery and
Level Design. In Proceedings of the Applications of Evolu-
tionary Computation (EvoGames workshop).
Cook, D. 2006. What are game mechanics?
http://www.lostgarden.com/2006/10/what-are-game-
mechanics.html.
Johnson, C. 2012. The creative computer as romantic hero?
or, what kind of creative personae do computational creativ-
ity systems exemplify? In Proceedings of the Third Interna-
tional Conference on Computational Creativity.
Kelly, T. 2010. Game dynamics vs game me-
chanics. http://www.whatgamesare.com/2010/12/game-
dynamics-vs-game-mechanics.html.
Muggleton, S., and de Raedt, L. 1994. Inductive logic pro-
gramming: Theory and methods. Journal of Logic Program-
ming 19(20).
Nelson, M. J., and Mateas, M. 2007. Towards automated
game design. In Proceedings of the 10th Congress of the
Italian Association for Artificial Intelligence.
Pell, B. 1992. Metagame in symmetric, chess-like games.
In Heuristic Programming in Artificial Intelligence 3: The
Third Computer Olympiad.
Ritchie, G. 2007. Some empirical criteria for attributing
creativity to a computer program. Minds and Machines
17(1):67–99.
Sicart, M. 2008. Defining game mechanics. Game Studies.
Smith, A., and Mateas, M. 2010. Variations forever: Flex-
ibly generating rulesets from a sculptable design space of
mini-games. In Proceedings of the IEEE Conference on
Computational Intelligence and Games, 273–280.
Togelius, J., and Schmidhuber, J. 2008. An experiment in
automatic game design. In Proceedings of the IEEE Confer-
ence on Computational Intelligence and Games.
Treanor, M.; Blackford, B.; Mateas, M.; and Bogost, I.
2012. Game-o-matic: Generating videogames that represent
ideas. In Proceedings of the Third Workshop on Procedural
Content Generation in Games.
Turon, A. J.; Thamsborg, J.; Ahmed, A.; Birkedal, L.; and
Dreyer, D. 2013. Logical relations for fine-grained concur-
rency. In Proceedings of the 40th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, POPL ’13.


