Experimental AI in Games: Papers from the AIIDE 2015 Workshop

Would You Look at That!
Vision-Driven Procedural Level Design

Michael Cook
AIR Lab, University of Falmouth
mike @ gamesbyangelina.org

Abstract

In this paper we present a technique for procedurally
generating sections of 3D level geometry using compu-
tational evolution and guided by the visibility of certain
game objects or areas during play. We show that certain
level design goals can be achieved in the resulting lev-
els, such as encouraging or dissuading player sightings
of certain objects or locations. We also give details of a
simple study of players on the generated levels, and dis-
cuss how this might be expanded to incorporate more
complex problems related to level design.

Introduction

Designing 3D levels for games is an extremely complex and
multi-faceted task. It often requires an understanding and ap-
preciation for many different disciplines, including architec-
ture, art direction, colour theory, psychology, lighting, and
camera direction. Levels must often be exquisitely designed
to achieve certain aesthetic goals, but they must also bal-
ance this with many functional goals, too, such as providing
spaces for the player to engage with a game’s systems, or
ensuring content is paced and ordered correctly.

Another important function of level design is to draw the
player’s attention to certain areas, in order to lead their ex-
ploration, to teach them about a game mechanic, or simply
to reinforce an element of the game narrative. For exam-
ple, in the first-person narrative game Dear Esther, a plot-
significant radio tower is prominently visible for much of
the game, deliberately and specifically framed by the land-
scape and the player’s path through the island, before the
player is made aware of its significance. In Mirror’s Edge the
level design uses colour coding and architectural structure to
guide the player towards the exit to a level or play area — an
example of which is shown in Figure 1. Good level design
can suggest or encourage a player without explicitly forcing
them to perform actions or taking away control, which is a
much more preferable way of conveying information as it
does not disrupt immersion, flow or the player’s sense that
they are in control of the game.

Procedural content generation is a rapidly expanding area
both within commercial game development and academic

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

| Sher

Figure 1: A room in Mirror’s Edge. Colour and the clear
lines of the suspended walkway draw the player’s eye to-
wards the exit door.

research. Some generative approaches and content types are
deeply iterated upon in order to find better and more reliable
ways to do them, such as dungeon generation (Horswill and
Foged 2012), while other work focuses on breadth and find-
ing new techniques and new kinds of content to generate,
such as discovering new classes for RPGs (Pantaleev 2012).
At the same time, the emerging field of automated game de-
sign seeks to integrate procedural generation research at a
higher level, providing software with the capacity to make
design decisions and express them through generative pro-
cesses.

ANGELINA is a piece of software which automatically
designs games, built using ideas from procedural content
generation as well as computational creativity (Cook and
Colton 2011). The system has designed games in many
genres, including simple 2D arcade games and puzzle-
platformers. ANGELINA has primarily focused on design-
ing games with reflex-based challenges or skill checks of
some kind, something which is a common theme throughout
automated game design research currently (Cook and Smith
2015). We have previously argued that automated game de-
sign must strive to be a broad and all-encompassing disci-
pline that understands the many facets and interleaved ele-
ments of game design. This paper explores an existing area
of procedural generation research — level generation — with
a new angle, focusing on how the vision of the player can be
incorporated to achieve both functional and aesthetic design

goals. This represents another step towards a new version
of ANGELINA, which we hope will be able to demonstrate
a richer and more nuanced understanding of how 3D spaces
are designed, by being able to incorporate ideas such as what
the player sees into its games.

In this paper we present a system for generating the de-
signs of 3D spaces by placing geometry in a world that
the player must navigate through. The generation process
is guided by how much or how little of certain markers the
player sees during their path through the world. We discuss
how the limitations of our current approach could be solved
in future iterations of the system, and report on a short pilot
study which suggests the system works in its current, simple
form.

Related Work In 3D Level Design

A majority of work on procedural level design applies to
two-dimensional levels, in particular side-on platformers in
the style of Super Mario such as (Shaker et al. 2011). Work
by Cardamone et al. in (Cardamone et al. 2011) looked
at generating 3D levels for competitive scenarios in multi-
player games, with a focus on how the design of the level
influenced combat interactions between players. This has
since been extended to look at level balance in (Lanzi, Loia-
cono, and Stucchi 2014). There has also been interested in
level design for single-player experiences, such as (Lopes,
Liapis, and Yannakakis 2015) which looks at atmospheric
design for 3D horror game levels, combining audio place-
ment with level geometry.

Nitsche et al. have explicitly explored the relationship be-
tween procedural generation, level design and player experi-
ence (Nitsche et al. 2006). The focus here is on empowering
the player to have control or agency in the generative pro-
cess, which is generally not our focus here: instead, we are
more interested in offline generative processes which occur
before the game is finished and presented to the player. How-
ever, the authors ask very important questions about the rela-
tionship between procedural generation and authored expe-
riences. In particular, their discussion about conflict between
generated and designed spaces closely parallels the motiva-
tions for our work on ANGELINA:

The mere fact, that we can generate space does not
mean that this space necessarily makes any sense or
is of any value to the player. Procedurally generated
game worlds can stretch into infinity but the meaning
of each single locale can be thinned out by that.

The authors’ system Charbitat overcomes this partly
by relying on hand-authored content which is reused by
the generative system within procedural spaces. With AN-
GELINA we hope to build a system capable of providing its
own sense of detail and design, without relying on people
for large chunks of content.

In this paper we consider related but separate problems
to the above work: we are interested in how the objects vis-
ible to a player during the game can be used to guide the
design and layout of level geometry, with a focus on single-
player experiences. This may have applications to multi-

10

player games as well, since level readability is very impor-
tant in competitive situations (Gaynor 2009).

System Description

In this section we describe our system for generating level
designs, and describe how the system is augmented to track
the visibility of objects, as well as detailing the fitness func-
tions used to evaluate the levels. In the following section we
describe specific experiments using this system to illustrate
its potential output.

Basic Level Generation

For the purposes of this paper, a level is a square area of
game space, surrounded by walls the player cannot climb
over. The player begins at a fixed location and must reach
a defined ‘exit object’ to complete the level. Clearly this
doesn’t represent any particular game, but instead models
a recurring subtask within games, namely moving from one
location in a 3D space to another. A level design is repre-
sented as a collection of cuboid objects which are placed
in the game world and obstruct vision and movement. We
generate the level designs in this paper using computational
evolution.

The population of level designs is initialised by ran-
domly creating a number of cuboids (the exact number
is randomised within a set minimum and maximum) with
randomly-set positions and size (referred to within Unity as
a three-dimensional vector called scale) within minimum
and maximum levels. The parameters used for the levels
shown in this paper are all defined in table 1.

Crossover of two level designs is performed as one-point
crossover on the list of cuboids making up the level. Muta-
tion occurs at a rate of 5% and randomly replaces a cuboid
with a random cuboid, or randomly varies either the posi-
tion or scale of the cuboid, while obeying the maximum and
minimum constraints on these values.

For basic level generation, the system’s objective is sim-
ply to create paths that cause the player to take longer paths
through the game space in order to reach the exit. Therefore
to evaluate a level design, the system takes control of the
player object, plots a path to the exit using A*, and records
how long it takes for the player to move there. Fitness is
simply the time taken to reach the exit, with a negative fit-
ness returned if the player gets stuck and can’t progress or
the path takes an abnormally long time (greater than thirty
seconds for our examples here). This results in increasingly
long and convoluted paths to the exit. Figure 2 shows a top-
down view of a level evolved with a population of 30 level
designs over 10 generations.

Parameter | Min | Max
Number of Cubes | 25 35
Width 1 8
Height 0.5 8
Depth 1 8

Table 1: Parameters used to generate levels shown in this
paper. Scale is in Unity base units.

Adding Vision

In order to add an understanding of vision to the system,
we attached a ‘camera’ to the player object being moved
through the levels. Objects tagged as ‘vision markers’ were
introduced to the level. When moving through the level, the
camera checks to see if any vision markers are within the
frustrum of the camera. This tells us if the object is within
the camera’s bounds, but does not tell us if it is obscured
by other object such as level geometry. To confirm visibil-
ity, the camera then calculates the vertices of the model and
casts a ray to each vertex from the camera. For the exam-
ples described in this paper, we consider an object visible if
one or more of these raycasts are successful. This could be
made more strict, for example requiring that half or even all
of the raycasts succeed, to make the object’s visibility more
explicit.

Once an object becomes visible, the camera tracks the du-
ration of its visibility and stores the duration once the object
stops being visible again. It can track multiple objects dis-
tinctly, meaning that the visibility of different objects can be
combined and distinguished between in the fitness functions.
For the examples in this paper we use a variety of fitness
functions, however they generally involve a linear combina-
tion of the sum of the visibility intervals for each marker,
with an optional additional parameter capturing the length
of the path to the exit. We describe the fitness functions in
more detail as we describe each experiment in our results
section.

Results

In this section we show several results obtained with differ-
ent fitness functions and vision marker setups. These results
are shown without evaluation, and without curation, as an
example of what the system is capable of producing. We then
took several outputs from the system and ran a pilot study
with people who played the levels and reported on object
visibility. This is partly to compare visibility readings, but
also shines a light on the importance of the player modelling
used during evolution, which we discuss in subsequent sec-
tions.

Illustrative Results

All Markers Visible Figure 3 shows the resulting level
from a run of the system with two hand-placed visibility
markers, one red and one green, and the condition that both
should be visible as much as possible on the path to the exit.
The fitness function used is the mean visibility of all mark-

ers, defined as:
> d(m)

| M]

Where M is a set of visibility markers, all of which we
wish to be visible to the player, and d(m) is the duration
in seconds that m was visible for m € M. The result is a
path where the player takes a long diagonal across the level,
passing by the red marker and looking directly at the green
marker as they travel through the main level area. Note the

dmean(M) = (1

11

Figure 2: A sample level generated by the system, without
visibility constraints. The player starts at the bottom-left cor-
ner of the image and must reach the top-right corner.

fitness function does not include the time spent travelling to
the exit, since an increased time spent looking at the objects
implies that a longer time was spent travelling in general.

Some Markers Visible Figure 4 shows the level result-
ing from a run of the system with two hand-placed visibility
markers as with the previous example. On this occasion, the
red marker’s visibilty should be minimised, while the green
marker’s visibility should be maximised. The fitness func-
tion we use is defined as follows:

f(Mmaxa Mmin) = dmean(Mmax) — dmean(Mmm)

Where for any given set of visibility markers M,
dmean(M) is defined as in (1), M, is a set of markers
whose visibility we wish to maximise, and M,,;,, is a set of
markers whose visibility we wish to minimise. As before,
we do not include the overall time spent travelling as this is
incorporated implicitly into maximising the visibility of cer-
tain markers. The resulting path leads the player away from
the red marker, into an open area where the green marker is
clearly visible on the way to the exit.

No Markers Visible Figure 5 shows a level evolved with
two hand-placed visibility markers as before. This time both
visibility markers should be unseen as the player paths to
the exit. In this case, we add in the path length to the fit-
ness function in order to encourage longer paths (otherwise
the system simply converges on straight-line paths that don’t
see either marker). However, we weight the fitness loss from
seeing markers higher than the path length, otherwise the
system can evolve paths that run past the markers quickly
and then take very long paths to rebalance fitness. By penal-
ising marker sight more heavily, the system is encouraged

Figure 3: An evolved level design, constrained by both hand-
placed Red and Green markers being visible on the path. The
player starts at the bottom-left corner of the image and must
reach the top-right corner.

to find longer paths that avoid them altogether. The fitness
function:

f(M,PL) = PL — dmean(M)

Where dmean(M) is defined as in (1), M is the set of
markers, all of which we wish to avoid seeing, and PL
is the length of the path in seconds. We include the path
length here since the duration a marker is visible for can-
not be negative, which produces a flat fitness gradient. The
evolution does work without path length being incorpo-
rated, but the resulting levels were considered less interest-
ing in experimentation. The result in Figure 5 shows two
approaches to avoiding vision of markers: in the case of the
green marker it’s simply placed behind blind corners that the
player doesn’t see on a straight-line path to the exit. How-
ever, the red marker has been placed inside a piece of geome-
try (we exaggerate its height in the figure to make it visible).
These are two very different ways of fulfilling the fitness
function, and we discuss this in the following sections.

Pilot Study

As we discuss in the next section, the current pathfinding
methods and the task of seeking a goal do not necessarily ac-
curately represent how players navigate through 3D worlds.
Nevertheless, we conducted a simple study using three lev-
els generated by the system to investigate how successful the
evolution is in hiding or showing level sections to the player.
We generated three levels using the same settings as those in
the results shown above: one with both markers not visible,
one with one marker visible and the other not, and one with
both markers visible.

12

Figure 4: An evolved level design, constrained by the Green
marker being visible, and the Red marker not being visible.
The player starts at the bottom-left corner of the image and
must reach the top-right corner.

We asked players to find the exit in each level (we fa-
cilitated this by making the exit project a column of light
upwards into the sky so the players could gauge the rough
bearing of the goal). After completing each level, players
were asked to indicate if they noticed any coloured markers
in the level. We offered four possibilities: red, green, purple
and orange. We also asked players to indicate if they gave up
trying to reach the exit (since this task is quite difficult and
it is worth noting if the system generated a path which was
obscure or hard to find).

The study had ten participants in total, nine of whom are
people with long-term histories of playing games. All ten
participants completed all three levels and found the exit,
and on all three levels all participants correctly identified the
markers that were intended to be visible, did not identify
markers that should not be visible, and did not raise false
positives by identifying markers that were not in the level
(such as the orange marker). In other words, the levels per-
formed exactly to specification in all three cases.

Although the data matches up well with the evolved level
specifications, we consider this only a cursory indicator of
the system’s quality - these levels are currently relatively
simple to design, as we discuss in the following section, and
so it is not hugely surprising perhaps that the system per-
forms well. However we are nevertheless pleased that it con-
firms the basic ideas behind the system and hope that we can
follow this up with more substantial surveys on this work as
the system is developed further. Validating a model of player
curiosity, as we discuss below, should prove a more difficult
task.

Figure 5: An evolved level design, constrained by both the
Green and Red markers not being visible. The player starts at
the bottom-left corner of the image and must reach the top-
right corner. The Red marker height has been exaggerated
S0 its position inside the geometry is visible.

Evaluation and Discussion
A* Pathfinding Accuracy

Naturally, the Al pathfinding processes used by the simu-
lation do not accurately represent how players will move
through a 3D space. We use such pathfinding here primar-
ily as proof-of-concept of the system and as a useful starting
point to explore some of the ideas of the project. Pathfind-
ing is imperfect for two main reasons: in games with explicit
pathfinding goals (such as reaching an exit) the player must
still explore and understand the space to find the exit. Other
games allow or encourage exploration at leisure, and are thus
less directed than the pathfinding we use. A major point of
future work which we hope to explore next is building mod-
els of player movement beyond point-to-point pathfinding
that incorporate ideas such as visual curiosity and explo-
ration. Despite this weakness we’re happy with the results
from this system, and we feel that even with this basic form
of simulation it shows that the approach can carve out mean-
ingful level design sketches.

Obscurity vs. Hiding

We don’t define what the vision markers represent in this
system. As we saw in the results, the evolutionary system
sometimes hides markers by placing them inside geometry,
and sometimes hides them in open space but behind ob-
scuring objects. In the former case, markers represent areas
which the player should be zoned out from somehow - like
an inverse reachability marker. They indicate constraints for
the paths produced by the level designer. In the latter case,

13

markers represent areas which are off the critical path or
made secret from the player somehow, but are still theoreti-
cally accessible. These solve very different design problems
- we believe that we can distinguish between these two cases
in future versions of the system by implementing secondary
pathfinding objects that seek out the vision markers and de-
cide whether or not they can be accessed regardless of their
visibility.

3D Model Usage

In order for this to apply to real-world level design problems,
the use of cube primitives as level geometry would need re-
placing with a database of complex 3D models. Using non-
primitive 3D models complicates the generation problem
with our current approach - cubes can be enlarged to any
size or shape without looking unusual, which is not true of
most 3D models. Additionally, most game models will have
more complex silhouettes and this might mean it’s harder to
find high-fitness results as obscuring the player’s vision may
be more difficult. However, this only emphasises the inter-
estingness of the problem from a computational standpoint
— we’re eager to see what results can be obtained on this
harder problem.

One way to overcome this might be to use a database
with a variety of 3D models and selecting from these mod-
els rather than attempting to adjust scale. In doing so we
reduce the generative space but allow for custom model sets
to be used in level generation. As long as these models are
diverse in their size and shape, it should also be possible to
find placements that obscure vision enough (such as large
buildings). This would enable the tool to be more useful in
an applied setting, as it can work with real game content and
understand constraints on their placement to produce more
useful, more realistic level sketches. We don’t consider it an
urgent point of future work, but it is definitely a valuable
line of inquiry. Even in its current state, we might consider
the generator similar to the practice of greyboxing in level
design, where cubes are used to sketch out the overall struc-
ture of models in a level.

Computational Level Design

Finally, it’s important to point out that this work represents
an incredibly simplified idea of level design, and then ex-
amines one aspect in excruciating detail. While we report
on this detail in this paper, we do so with a view to extend-
ing this work in the future, and building a system which can
understand more than simply where an object is placed and
when it is seen. Even this task has many nuances not cap-
tured here: does the object stand out against its background?
How is the object lit? Does the player know what the ob-
ject signifies? There are many complex design problems all
interlinked here, and we offer this only as one possible start-
ing point into this area of rich and exciting questions to con-
sider. This is a simplification, but hopefully a useful isolated
example to study.

Conclusions

In this paper we presented an evolutionary system for de-
signing 3D level layouts that are constrained by the objects

the player sees on their path through the world. We show
that visibility constraints can easily be engineered into such
a system and that we can achieve level design goals such as
encouraging player attention onto an object. We discussed
the potential extensions for this work and its current limita-
tions. 3D level design is an interesting and nuanced area of
game development that we are only just beginning to explore
with procedural generation — we believe this work sheds a
little more light on another aspect of this interesting area.

Acknowledgements

The author wishes to thank Gillian Smith and Kaz Grace for
informative discussion about game design, and Robert Yang
who helped inspire this work. Thanks also to the review-
ers of the paper who suggested many useful reading topics
which will help the project grow.

References

Cardamone, L.; Yannakakis, G. N.; Togelius, J.; and Lanzi,
P. L. 2011. Evolving interesting maps for a first person
shooter. In Applications of Evolutionary Computation.

Cook, M., and Colton, S. 2011. Multi-faceted evolution of
simple arcade games. In Proceedings of the IEEE Confer-
ence on Computational Intelligence and Games.

Cook, M., and Smith, G. 2015. Formalising non-formalism:
Breaking the rules of automated game design. In Proceed-
ings of the Foundations of Digital Games Conference.

Gaynor, S. 2009. Basics of effective fps encounter de-
sign. http://www.fullbrightdesign.com/2009/02/basics-of-
effective-fps-encounter.html.

Horswill, I. D., and Foged, L. 2012. Fast procedural level
population with playability constraints. In Proceedings of
the Artificial Intelligence in Interactive Digital Entertain-
ment Conference.

Lanzi, P. L.; Loiacono, D.; and Stucchi, R. 2014. Evolving
maps for match balancing in first person shooters. In /IEEE
Conference on Computational Intelligence and Games.

Lopes, P.; Liapis, A.; and Yannakakis, G. N. 2015. Sonan-
cia: Sonification of procedurally generated game levels. In
Ist Computational Creativity and Games Workshop at the
International Computational Creativity Conference.
Nitsche, M.; Ashmore, C.; Hankinson, W.; Fitzpatrick, R.;
Kelly, J.; and Margenau, K. 2006. Designing Procedural
Game Spaces: A Case Study. In FuturePlay.

Pantaleev, A. 2012. In search of patterns: Disrupting rpg
classes through procedural content generation. In Proceed-
ings of the The Third Workshop on Procedural Content Gen-
eration in Games.

Shaker, N.; Togelius, J.; Yannakakis, G. N.; Weber, B. G.;
Shimizu, T.; Hashiyama, T.; Sorenson, N.; Pasquier, P.;
Mawhorter, P. A.; Takahashi, G.; Smith, G.; and Baum-
garten, R. 2011. The 2010 mario ai championship: Level
generation track. IEEE Transactions on Computational In-
telligence and Al in Games 3(4):332-347.

14

