Experimental Artificial Intelligence in Games: Papers from the AIIDE Workshop

A Rogue Dream:
Automatically Generating Meaningful Content For Games

Michael Cook and Simon Colton
Computational Creativity Group
Goldsmiths College, University of London
ccg.doc.gold.ac.uk

Abstract

Procedural content generation is often seen simply as
a means to generate ‘stuff’, elaborating on or rearrang-
ing abstract data types that describe levels or modular
pieces of gameplay. Generating content which is situ-
ated in an understanding of the real-world is a much
harder task; it requires access to large amounts of
knowledge, and a good technique for parsing and us-
ing that knowledge. In this paper we describe A Rogue
Dream, a game prototype which can generate new vi-
sual content and change its design based on an input
word from the player at the start of the game. We de-
scribe the game and the tools it makes use of to do this,
and use the game to discuss ways in which such tech-
niques might enable unique kinds of gameplay or new
directions for intelligent design tools.

Introduction

Procedural content generation (PCG) is commonly used in
almost every kind of game development, from experimental
self-expression (Kopas 2014) through to AAA mainstream
production (Studios 2011), and is a common theme in con-
temporary games research (Togelius et al. 2011). These PCG
systems, almost without exception, have no awareness of the
real-world context used by the game in which they are sit-
uated, however. Civilisation’s map generator does not know
about the politics of war for scarce resources, for example.
Rogue’s dungeon generator has no knowledge of Tolkien
lore. For the most part, PCG is used to generate content
which can be designed independent of context - the genera-
tor operates on abstract data structures that are not dependent
on real-world knowledge or cultural understanding.

This status quo is understandable, given that the context
surrounding a game is typically where the meaning or atmo-
sphere of the game is conveyed, something that a designer
may have the strongest attachment to and thus is least will-
ing to cede to a generator. A game about being an Italian
plumber might not have an artistic message to tell the player
per se, but the feeling of being an adventurous hero is clearly
something derived from the designer’s own interests and de-
sires as an artist, and integral to the playfulness of the game.
For many developers, whether aiming to create a blockbuster

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

als you.

B

s

-
Figure 1: A screenshot from A Rogue Dream. The input noun

is ‘Kid’. The player must avoid roaming School enemies,
and can collect Booger items to gain health.

hit or simply expressing the feelings of a single person, the
game’s meaning and context is perhaps the last thing they
would wish to give software control of. On the whole, PCG
is largely reserved for dealing with issues of scale or replaya-
bility — a thousand levels is better than a hundred, a thousand
weapons is more unpredictable than ten.

In this paper we will describe a PCG system which allows
for dynamic reskinning of a game, changing its surface-level
context in response to input words. This system is not lim-
ited to a dictionary, or a prepared catalogue of possibilities,
but will attempt to skin a game based on any input phrase,
sometimes unsuccessfully. While it is common to think of
a game’s message as integral to a game’s human touch, we
believe that the application of PCG to this problem may re-
veal new kinds of game experience, and new elaborations
on existing genres. It may also help solve a larger and more
longer-term problem: that of how to give an automated game
designer the capacity to connect real-world concepts to its
games.

We describe here A Rogue Dream (ARD), a roguelite in
which the game’s theme and context are decided upon at run-
time in response to player input. The game is able to change



its characters and enemies, rename and redesign player abil-
ities, and could soon be able to convey simple meanings
through the way in which it reskins itself. The remainder
of this paper is organised as follows: in the section A Rogue
Dream we give details of the tools and libraries it accesses
in order to dynamically restructure the game. We also give
examples of skinnings of the game and how the final game is
structured as a result. In Discussion we discuss the potential
of automating the act of designing new themes for a game at
runtime; finally in Future Work we look to extensions of the
system, and offer conclusions.

A Rogue Dream

A Rogue Dream (ARD) is an in-development roguelite, a
roguelike game which drops many of the more intensive re-
quirements of the genre while retaining some of the overall
structure. This is the second version of the game to date,
reimplementing the original version which was developed
during a game jam (Cook 2013a). ARD is a turn-based 2D
game played on a square grid in which the player must find a
level exit while avoiding or fighting enemies, and collecting
optional health pickups. A screenshot of the game is shown
in Figure 1. At the beginning of the game, the player is pre-
sented with a text box which reads ‘Last night, I dreamt |
was a...’. The player is then prompted to enter a noun to
complete the sentence. The game then begins loading and
skinning the game based on the input, assuming that the
player is taking the role of the given noun. The remainder
of this section steps through the same processes the game
does prior to play commencing.

Data Gathering

A Rogue Dream relies on a technique called Google Milk-
ing in order to gather information on the input noun from the
player. This technique is initially described in (Veale 2012),
where it was used to gather data for a linguistic tool called
Metaphor Magnet. The technique relies on the use of Google
Autocomplete results to mine data from the web. It assumes
that when a question is asked of Google, such as ‘Why do
doctors wear white coats?’, the asker believes the statement
contained in the question (in this case, the asker believes that
doctors wear white coats). By asking Google partial ques-
tions such as ‘Why do doctors’, Google will suggest endings
to the queries based on commonly entered search terms. The
endings to these questions can be extracted and stored as us-
able knowledge. Figure 2 shows a screenshot of Google’s
autocompletion of ‘Why do cats’.

ARD constructs a normal Google milking query by insert-
ing the target noun into the phrase ‘why do [noun]’. ARD at-
tempts to pluralise the noun but currently we do not employ
intelligent tools for doing this accurately in all cases. ARD
then extends the standard query by adding keywords after
the initial phrase to augment the search. We use several dif-
ferent keywords for gathering different kinds of information.
Currently we search for four different pieces of information:
enemies, items, goals and abilities. The keywords appended
to the searches are shown in Table 3, except in the case of
abilities, which we will cover later.

Google

‘ why do cats|
why do cats purr
why do cats eat grass
why do cats sleep so much
why do cats meow
why do cats knead
why do cats like boxes
why do cats have whiskers
why do cats hiss
why do cats bite
why do cats have tails

@

Google Search I'm Feeling Lucky

Figure 2: Google autocompletion results for questions about
cats. (Google and the Google logo are registered trademarks
of Google Inc., used with permission.)

Data Type Keywords
Enemies ‘hate’, ‘hurt’, ‘destroy’
Items ‘have’, ‘wear’, ‘eat’
Goals ‘need’,‘love’, ‘like’

Abilities N/A

Figure 3: Keywords used to augment Google searches.

The results of these searches are sorted according to the
type of game content they relate to, so that the Enemies cat-
egory, for example, contains the results of all three enemy-
related keyword searches. In the event that no results are
found for a particular data type the game can insert a ran-
dom noun, remove the entity type from the game entirely,
or simply ask the player for another query. Currently we use
the latter option and request another noun from the player,
although because of the time involved in processing a sin-
gle query, it may be better for future player experience to
use other more robust solutions such as replacing it with a
random noun from a predefined list.

Once ARD has gathered data for each data type it then
chooses one from each list to be included in the current
game, randomly. A point of future work is to make this pro-
cess more intelligent so as to choose results which can be
elaborated on with further PCG systems. We discuss this in
the Future Work section below.

When the targets have been chosen for each game entity
type, such as enemies or items, ARD then uses Spritely to
generate images to use in-game. An example set of results
for ‘cat’ would set the enemy to be ‘water’, the collectible
items to be ‘grass’ and the goal to be a ‘box’.

Spritely

Spritely is a Java-based tool for creating small-scale sprites
for use as placeholders in game projects. The tool was re-
leased by the author to help produce placeholder graphics



S I+
F iﬂ;

Figure 4: Output from Spritely. Left to right: Anchor, Cat,
Doctor, Snake. Outputs not recoloured. 32 x32 resolution.

for Ludum Dare entries (Cook 2013b) but the original moti-
vation for the tool was to allow for the generation of graphics
at runtime in a game, allowing visual content to be created
dynamically.

Spritely takes as input a query string which it uses to
search several image repositories for results. In addition,
it can also take parameters to affect many aspects of its
execution. Currently, the repositories Spritely queries are
Google Images, Open Clipart and Wikimedia Commons.
When searching these databases, Spritely will also perform
other augmented searches to improve the quality of search
results. For example, when searching Google Images for a
search string S, Spritely will also search for “cartoon S”
and “silhouette S”. These additional searches tend to return
images which are more likely to pass the filtering process,
described below, as well as finding images which look bet-
ter when scaled down to small resolutions.

When Spritely has retrieved a collection of images, it then
filters for images which are suitable for conversion to sprites.
To do this, it identifies images which have large areas of
similar colour around the entirety of their borders. Areas
of colour like this are easy to extract automatically, and by
ensuring it covers the entire border of the image we de-
crease the likelihood that the image is cropped in some way.
Once Spritely has filtered the images for ones with clean
borders it can then remove these areas, leaving a central
image surrounded by transparency. We then downscale the
image, without anti-aliasing, to 16x 16 resolution and save
the result. Spritely has many optional parameters, includ-
ing disabling certain repositories, randomly selecting im-
ages, colourising images using palettes scraped from Colour
Lovers' and changing the output resolution. Figure 4 shows
some hand-curated example output from the system.

ARD retrieves one image for each game entity: currently
the enemy, item pickup, player character and the goal. It then
stores these locally and loads them into the game once the
generation process is complete.

Abilities

In the current version of ARD, there is one final task prior to
play — the player is assigned a bonus ability they can activate
with the spacebar. An open problem in automated game de-
sign is being able to generate connections between arbitrary
real-world concepts and game mechanics (Cook and Colton
2013). Later in this paper we discuss a desire to generate
abilities that more closely link to the current player charac-
ter. Currently, ARD looks for key verbs in the Google results

"http://colourlovers.com/

and connects these to pre-made character abilities. For ex-
ample, any of the words ‘shoot’, ‘throw’ or ‘fire’ cause ARD
to generate a ranged attack that can destroy enemies from a
distance. Other abilities can heal the player if they take dam-
age, or teleport them instantly around the map. In the event
that no ability match can be found, the game defaults to
a randomly-chosen mechanic, with a word randomly taken
from the ability list compiled in the data-gathering stage.

Gameplay

The game loop in ARD is very simple at the moment —
the game can largely be considered a prototype, although
we explore possibilities for using our approach in games in
the later Discussion section. The player controls a character
modelled around the noun they supplied at the start of the
game. They have four life points, represented by icons at the
top of the screen. They can regain health lost in combat by
collecting items with the same icon strewn across the map,
but their health cannot be raised beyond the starting state of
four points. Enemies move randomly around the map, rep-
resented by the icons generated from Spritely.

The player must navigate the game’s level, looking for an
exit object. They can attack enemies by moving into them,
but can also be attacked in return. By avoiding combat, or
fighting and collecting health, the player explores until the
exit is discovered.

Example Skinnings

Figures 5a, 5b and 5c show screenshots from A Rogue
Dream with three different input words. In this section we
will briefly describe each one to give an idea of the game
produced. Figure 5a was generated from the input word
‘cat’. The enemies of the cat are water droplets, their health
is represented by long grass, and their goal is a cardboard
box. Figure 5b was generated from the input ‘kid’. The en-
emies of the kid are schools, their health is represented by
friends, and their goal is cinnamon toast crunch. Figure 5c
was generated from the input ‘musician’. The enemies of
the musician are pictures of the artist Kenny G, their health
is represented by long hair, and their goal is to reach some
drugs.

Notes On Success Rate

A Rogue Dream’s reliance on volatile, noisy data means that
it does not always find results, and even where it does find
results they do not always make sense. To give an indication
of its effectiveness, we performed a simple experimental run
of the system on 30 words, picked from three Top Ten lists
of animals, jobs and countries?. 60% of the words resulted
in a full skinning of the game, while 96% of the words re-
sulted in all but one game element being properly skinned.
In terms of quality, we performed a curation coefficient anal-
ysis as described in (Colton and Wiggins 2013) — we mea-
sured what proportion of the results we would be willing to
show to someone as quality output of the system. We con-
sidered 66% of the results to be good and worthy of showing
others. The remaining third were let down either by bugs in

“http://www.thetoptens.com/lists/



The friends heals you

i
(b) A screenshot from ARD with the input ‘kid’

I < “n

(c) A screenshot from ARD with the input ‘musician’

the system, misinterpretation of terms through Spritely, or
through bizarre or unusual output from Google.

It should be noted that the three categories we chose -
jobs, animals and nations - are all things to which sentience
can be ascribed to, or are spoken in terms of being sen-
tient. This affects the nature of Google results significantly.
A Rogue Dream certainly doesn’t work on all words, or even
all nouns. Nevertheless we consider it an interesting starting
point for further expansion.

Discussion
A Rogue Dream as a Mechanic

The original version of A Rogue Dream was described by
one player as ‘like playing a videogame against The Inter-
net’. The reason for specifically likening it to the Internet,
rather than real-world knowledge, likely stems from the fact
that the information scraped by ARD is often tainted by
popular belief, misconception, stereotype and prejudice, as
opposed to purely factual information. For example, if the
player inputs man in the original build of ARD, the game
gives the player the ability to lie and cheat. In addition to
being unreliable, the information ARD gains from the In-
ternet is also highly volatile. In early 2013 when the original
version of ARD was built, the input journalist would include
Syria as an enemy. At the time of writing, in mid-2014, the
same query lists newsrooms as the enemy instead. Because
the information is dependent on what queries people are typ-
ing into Google, the data shifts in line with popular culture,
world events and public opinion.

While the current implementation of ARD uses the in-
put word primarily as a means of reassigning the game’s
theme, we can imagine ways in which this could be extended
so that the game’s theme, and the choice of input word by
the player, becomes intertwined with the game’s mechanics.
Consider a new version of ARD in which some elements
of the game world are already fixed at the beginning of the
game, and the player can change character at will by select-
ing new words for ARD to use. By switching between char-
acters, the player can overcome puzzles and combat encoun-
ters set by the game. Suppose the player is controlling a child
and comes across a wall of schools — the player is now chal-
lenged to think of something that the Internet might agree
would like schools or be able to bypass them (a teacher or
parent perhaps).

When interacting with ARD, the main attraction for play-
ers seems to be in selecting a word and seeing the relation-
ships and phrases that come out of their choice. By mak-
ing this process part of gameplay, the use of live data from
Google or other Internet sources becomes more than just
window dressing, and we can explore popular culture — and
potentially other data sets like social networks — through
games like ARD. We discuss some possible extensions to
ARD in Future Work, but the use of data from the Inter-
net, gathered at runtime, is an underexplored but rich area
for game design, and the volatility and breadth of the data
poses many interesting challenges for artificial intelligence
research in terms of interpreting, filtering and applying the
data to games in meaningful and intelligent ways.



A Rogue Dream as a Design Tool

Intelligent design tools promise to fundamentally improve
the way games are designed, helping developers plan out
game designs (Butler et al. 2013), or improve them in
real time (Liapis, Yannakakis, and Togelius 2013) (Smith,
Whitehead, and Mateas 2010). A Rogue Dream’s ability to
produce new entities which connect to existing ideas could
make it a casual design assistant capable of proposing in-
spirational ideas, even if it isn’t able to understand the en-
tirety of a game’s context. We can imagine a new version of
A Rogue Dream in which the player can design levels and
place objects in the game world. As they do so, A Rogue
Dream generates suggestions for new entities by performing
searches on the objects that the designer has already added
to the game world.

Results could appear as popups at the side of the screen,
that the player could either accept and integrate into their
game, or edit and change before using (or simply reject).
Although the level of sophistication in ARD’s suggestions
would be quite low currently, it would still serve as a source
of inspiration, particularly for younger designers. Because
the tool would be co-creative with a person taking primary
control of the resulting artefact, ARD can offer more sugges-
tions than normal, because it doesn’t need to filter its output
to the same high level of confidence. For example, it might
offer a list of suggested abilities for a character. In the pro-
totype version of ARD presented here the system has to be
very sure that an ability makes sense before using it, and so
the range of abilities is very limited. However, if the system
is there mainly to serve as inspiration, it can suggest more
options and allow the designer to fill in the blanks and inte-
grate it into the game properly.

With a wider corpus of understood keywords (such as
the ‘hates’ or ‘loves’ indicators that filter search queries),
A Rogue Dream could also reinterpret existing designs and
suggest new representations for them, in a similar manner
to how (Treanor et al. 2012) can interpret an initial graph
of game entities in different ways. For example, a designer
may have placed the player in the role of a kid, who avoids
bullies and tries to find his parents. ARD might suggest that
this could be swapped around, putting the player in place of
the bully and chasing after the kid. ARD can then fill in new
parts of the design with suggestions based on the player as
a bully — ARD currently suggests that bullies hate nerds, so
they can replace the enemy types from the original design.

Future Work

We discussed long-term goals for the ideas ARD represents
in the Discussion section above. In this section we discuss
shorter-term goals for ARD specifically, in order to make
the game more playable and to elaborate on its strengths.

POS Tagging and Other Linguistic Tools A major lim-
itation in ARD’s ability to execute and filter requests to
Google is its lack of linguistic knowledge. Assessing which
kinds of words are present in the autocompletion results
would allow it to better identify activities, items and per-
ceived properties of its subject matter. Embedding a part-
of-speech tagger into ARD would let it distinguish verbs

from adjectives and so on, allowing for more fine-grained
decision-making based on the output of the search.

ARD could also benefit from the integration of other sim-
ple language tools such as the ability to pluralise arbitrary
words, something which was present in the earlier version of
the game but was not ported to the new platform. Language
tools like this allow for both the input word and the found
phrases to be manipulated and used in new searches. This is
particularly important because the kinds of autocompletion
we are interested in normally pluralise words (e.g. ‘why do
cats hate dogs’) but when used in a game the singular form
is normally preferred (e.g. “You scratch the dog’). The cat
and dog examples are trivial, but many words are irregular,
and conjugating verbs for use in queries would be even more
complex to do without extra software support.

Metaphor Magnet Representation of the input word and
related concepts in ARD is currently undertaken in a literal
sense — for example, the player is a soldier, Google sug-
gests that soldiers kill civilians, so the soldier chases after
civilian entities in the game to destroy them. A future direc-
tion for the game is to allow it to interpret the initial player
input in a more metaphorical sense, using Metaphor Mag-
net (Veale 2012) and ConceptNet (Liu and Singh 2004) to
construct new relationship graphs that map those detected
through Twitter onto existing relationships in known knowl-
edge bases.

Metaphor Magnet, initially described in (Veale 2012),
can suggest metaphorical vehicles to convey certain con-
cepts or ideas. For example, one possible result for soldier
in Metaphor Magnet is wolf Suppose we wish to use this
metaphor instead of the original soldier entity. In order to
do this, ARD needs to find a second entity that can take the
place of civilians in the original relationship (soldier kills
civilian). This second entity would need to have a similar re-
lationship to wolf. We can use further Google milking to find
such entities (‘why do wolves kill sheep’ is one such result),
and then try to construct a game that represents the original
player request indirectly, instead of explicitly using the input
theme.

Metaphor-based generation might also allow for ARD to
add twists on the results it finds through Google, if we can
understand the requests well enough. For example, racists
are like vicious snakes, according to Metaphor Magnet. In-
stead of simply replacing a picture of a racist with a pic-
ture of a snake, we can use this information to extend the
metaphor into the game, perhaps by giving the snakes a
poisonous venom attack that hurts people. This extends the
metaphor (by making the player think about what the venom
might represent) and makes it more than just visual replace-
ment (by linking it to the gameplay).

Conclusions

In this paper we described A Rogue Dream, a simple
roguelite game that can dynamically reskin parts of its de-
sign in response to player input, using data from the Inter-
net. Unlike contemporary work operating on surface-level
context such as (Treanor et al. 2012) or (Nelson and Mateas
2007), ARD does not rely on static, filtered corpora such as



ConceptNet, and as such has a broader scope for possible
skinnings, but is subsequently less reliable and more noisy.
We described the techniques and libraries it uses to perform
its reskinnings, as well as discussing the main game loop
and showing some screenshots from possible game inputs;
we discussed the possible extensions of the technique that
would enable new kinds of game interaction and possible
benefits for intelligent design tools; and we looked at ways
in which A Rogue Dream could be extended through future
work.

Procedural content generation as a primary mechanical
force is underexplored in games. A Rogue Dream’s use of
data from the web makes the game unusually dynamic, inter-
esting to explore and probe, and while the game is simplistic,
we believe it shines a light on some possibilities that proce-
dural content generation might offer. However, the tradeoff
of working with such rapidly changing and noisy data is that
using such data coherently and reliably is very difficult. A
Rogue Dream is often broken or confusing for many inputs,
and this poses many challenges for Al research in the future,
but these challenges may have important results beyond just
a few games, and may help address larger issues in auto-
mated game design and procedural content generation.

Acknowledgements

The authors wish to thank Antonios Liapis, Azalea Raad and
Tony Veale for helpful discussions and suggestions between
versions of A Rogue Dream. The reviewers all gave very
candid and encouraging feedback and we did our best to in-
corporate some changes to the paper, including an expanded
results section - thank you all for your reviews. This work
was funded by EPSRC grant EP/L00206X/1.

References
Butler, E.; Smith, A. M.; Liu, Y.-E.; and Popovic, Z. 2013.
A mixed-initiative tool for designing level progressions in
games. In Symposium on User Interface and Software.
Colton, S., and Wiggins, G. A. 2013. Computational cre-
ativity: The final frontier?
Cook, M., and Colton, S. 2013. From mechanics to mean-
ing and back again: Exploring techniques for the contextu-
alisation of code. In Proceedings of the AIIDE Workshop on
Artificial Intelligence and Game Aesthetics.
Cook, M. 2013a. A rogue dream. In Proceedings of the
Fourth International Conference on Computational Creativ-
ity.
Cook, M. 2013b. Spritely autogenerating sprites from the
web. http://tinyurl.com/spritelypost.
Kopas, M. 2014. Lullaby for heartstick spacer. http://a-dire-
fawn.itch.io/lullaby-for-heartsick-spacer.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. Sen-
tient sketchbook: Computer-aided game level authoring. In
Proceedings of the ACM Conference on Foundations of Dig-
ital Games.
Liu, H., and Singh, P. 2004. Conceptnet: A practical
commonsense reasoning toolkit. BT Technology Journal
22:211-226.

Nelson, M. J., and Mateas, M. 2007. Towards automated
game design. In Artificial Intelligence and Human-Oriented
Computing. Springer. 626—637.

Smith, G.; Whitehead, J.; and Mateas, M. 2010. Tanagra:
a mixed-initiative level design tool. In Proceedings of the
Fifth International Conference on the Foundations of Digital
Games.

Studios, B. G. 2011. The Elder Scrolls V: Skyrim.
http://www.elderscrolls.com/skyrim.

Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. [EEE Transactions Computational
Intelligence and Al in Games.

Treanor, M.; Blackford, B.; Mateas, M.; and Bogost, 1. 2012.
Game-o-matic: Generating videogames that represent ideas.
In Proceedings of the Third Workshop on Procedural Con-
tent Generation in Games.

Veale, T. 2012. From conceptual ‘mash-ups’ to ‘bad-ass’
blends: A robust computational model of conceptual blend-
ing. In Proceedings of the 3rd International Conference on
Computational Creativity.





