Initial Results From Co-oper ative Co-evolution
for Automated Platformer Design

Michael Cook, Simon Colton, and Jeremy Gow

Computational Creativity Group, Imperial College, London
http://ccg.doc.ic.ac. uk

Abstract. We present initial results from ACCME, A Co-operative CaleNionary
Metroidvania Engine, which uses co-operative co-evoluticautomatically evolve
simple platform games. We describe the system in detail astifyj the use of
co-operative co-evolution. We then address two fundarhgntstions about the
use of this method in automated game design, both in ternts ability to max-
imise fitness functions, and whether our choice of fithesstfan produces scores
which correlate with player preference in the resulting gam

Keywords: automated game design, procedural generation, co-ogecatievolution

1 Introduction

Procedural content generation (PCG) is a highly active @iressearch that offers effec-
tive methods for generating a wide variety of game conte®G Bystems tend to work
in isolation, often as a supplement to a human-designeémsystesigning aspects of
the game’s world [1-4]; generating items or abilities sdiite the individual currently
playing [5, 6]; or generating quests or tasks for the plagemdertake [7—9]. However,
automating design as a whole — that is, the design of a gaml/dnl a system and
without direct human judgement — remains largely uningedéd.

The problem of automated game design is an attractive onédieess, because it
not only provides us with a basis to build stronger, more blpprocedural content
generation systems, but also allows for more intelligesigie systems, representing
a move away from merely creating content and towards coabipgrwith a human
designer on a shared creative task. We have shown in [104thainated game design
systems can help complete partially-specified designsthduwork building systems
such as this will drive the development of assistive desigitst

The remainder of this paper is organised as follows: in ea@j we introduce co-
operative co-evolution, prior work in this area, and redateork in automated game
design. In section 3, we present ACCME, a system which enspboyoperative co-
evolution to automatically design 2D platform games. Weegletails of experiments
conducted using ACCME to investigate the effectivenessoffautational co-evolution
as an automated design technique. In section 4, we preseolus®mns and look at
future work in the area.

2 Background

A co-operative co-evolutionary (CCE) system solves a molby decomposing it into
several subtasks callspeciesThese are represented as independent evolutionary pro-

2 Co-operative Co-evolution for Automated Platformer [@asi

cesses that are evaluated by recomposing members from epalation into solutions
to the original problem, and evaluating the quality of thenpdete solution. A CCE
system decomposes a probleR,inton subtasksp, . .., P,, where asolutionfor P
isaset{pi,...,p,} Withp, € P,.

A fitness function for such a system evaluates a solution ¢oldiger supertask
P, rather than evaluating members of a subtask’s populafiberefore, to evaluate a
member,p,, of the subtask’,’s population, we extract the most fit member of every
other subtask’s population, compose this set to form a isolub P, and apply the
fitness function to this hybrid solution. The notion of ‘cpearative’ evolution refers to
the way in which the fitness of the solution is directly rethtiehow wellp,. co-operates
with the other components of the solution. Since these otherl components do not
change during the evaluation of the populatiBn the fithess represents how well a
member of the population df, contributes to the overall solution.

Co-operative co-evolution was proposed in [11] by Potter @e Jong, in the con-
text of function optimisation problems. They state thatdider to evolve more complex
structures, explicit notions of modularity need to be idtroed in order to provide rea-
sonable opportunities for complex solutions to evolve”. Mad that for creative tasks
such as game design, a similar level of modularity is dekdrab

The ANGELINA System

In [10], we presented ANGELINA, a system that designs arcgal®mes using co-
operative co-evolution. We decomposed the task of degigsiiich games into several
species, each of which is responsible for a certain aspélcealfesign. The three species
generatanaps two-dimensional arrays that describe passable and irapkesareas in
the game’s levellayouts which specify the arrangement of red, green and blue estiti
in the game world as well as the play character; anesets which describe the way in
which the non-player entities moved, and also define one oe mutes that describe the
effects of certain types of entity, player or obstacle difig with one another. A combi-
nation of a map, layout and ruleset defined a game. We pertbse\eeral experiments
to support the claim that CCE is able to rediscover existenges in the target domain,
such as PacMan, as well as games that were novel. In [10] weildes demonstra-
tion of the software running independently to design gamed an assistive task where
ANGELINA is given hand-designed maps and produces suitatdsets and layouts.

Related Wor k

Although we are not aware of any other work which addressepithblem of automat-
ing whole game design, there are other related project9]Jhe authors evolve rule-
sets for arcade games. The system uses a heural networknaldesets. The fithess
of games is based on how hard or easy they were for the netwdeain. This work
inspired the design of our domain in [10]. In [7], Nelson anat¥hs evolve simple
‘minigames’ by interpreting terms that describe actionsuabjects. The work is in-
teresting in terms of higher-level design tasks relatinghinterpretation of themes
and their relation to game mechanics, although the work doéspecifically tackle
interrelated or co-operating design tasks.

In[8], Browne and Maire present a system for automaticadlyigning board games.
The underlying task of designing a set of rules that goveditlinteractions is common

Initial Results From Co-operative Co-evolution for Autae Platformer Design 3

to both projects. The work is primarily involved in both idiéying ‘indicators of game
quality’ and subsequently applying these as heuristiciewlutionary process for
generating games. The work culminated in major successi iarea, including the
publishing of some computer-generated game designs as eaiaboard games.

3 ACCME

Metroidvaniais a subgenre of 2D platform games. The term, a portmante&wof
games that popularised the genre, was coined by SharkeyNiERjoidvania games are
“based... on exploration with areas that [can] only be reddhfter attaining items in
other areas” [13]. Contemporary examples vary from casualdre challenging games
[14,15]. The subgenre’s core concepts lend themselvegaeviiihess functions.
ACCME is a system we have developed that designs such gaimgs@GE, built
on an evolutionary framework derived from [10]. ACCME is qmrised of a Map
species, a Layout species and a Powerset species. We firgthelva ACCME rep-
resents a game, then examine the species making up the C&&sprand how playouts
were implemented. We also detail some evaluative work wimesstigates the useful-
ness of CCE and the relationship between our definition cédrand game quality.

3.1 Representation

A game is represented as a 3-tuple consisting of a Map, a ltayala list of powerups
called aPowerset A map is a two-dimensional array of integers, where eadygettin
the array maps to an 8x8 pixel tile within the finished gamezaAro value in the array
describes an empty space, and any value greater than zeeseafs some tile texture
(such as grass, or water).obllision index, is chosen such that any integer less than or
equal toi is non-solid in the game world. This is used to define whichdets describe
solid platforms and walls, and which describe scenery. Tdiksion index allows for
tiles to change at runtime, allowing the representatiomckéd and unlockable doors.

A layout defines what we calirchetypesa description of a class of enemy. An
archetype consists of one or maetionsand amovement behaviouMovement be-
haviours describe how the enemy moves through the gametegfeom one oSTATI C,
where the enemy does not moWATROLS, where the enemy moves horizontally un-
til it meets an obstruction or there is no solid ground to watk andFLI ES, which
is similar to patrolling but does not require solid groundti@ns describe things that
enemies can do during the game that provide a challenge tdker or somehow dif-
ferentiate their behaviour from other enemies. An archetygs zero or more actions,
selected fronTURRET, which fires a projectile at the player whenever they areiwith
certain sight range?OUNCE, which causes the enemy to leap towards the player when
they have an unbroken line of sight, aMdSSI LE, which fires a slower projectile that
follows the player. A layout also contains a list of enemighjch are described by
an (z,y) starting co-ordinate in the map, and an archetype number.|&yout also
describes the player’s starting location and the locatfdh@exit to the game.

A powerset is a list of powerups. A powerup is described by -arctinate repre-
senting its location in the map, as well asazget variableand atarget value When
the player touches the powerup, the target variable is athnithin the game code so

4 Co-operative Co-evolution for Automated Platformer [@asi

(a) (b)

Fig. 1: Screenshots showing map templates (left) and redraght).

that its value becomes that of the target value. There aee ttarget variables avail-
able to ACCME 4 unmpVel oci t y, which describes the velocity applied to the player
when the jump key is pressegl, obal Accel er ati onY, which describes the effect
of gravity applied to game objects, andl | i si onl ndex which defines the integer
value above which map tiles are considered solid. Targetegahre chosen from an
integer range defined appropriately for each powerup.

3.2 CCE Species

Maps are constructed out of smaller two-dimensional arrays efdfiwidth and height
called Map Tiles The specific layout of a map tile is selected from one of 13out
templates (defining the border around the tile). These ¢eneplates define tile borders
as blocked or unblocked - for instance, Figure 1(a) showswdardemplate where
the lower side of the tile is blocked. We provide all possip&mutations, with the
exception of the case where all sides are blocked. A map I8le selects one of 12
inner templates, which were hand-made. An example of sueimd-brafted template is
provided in Figure 1a. Hand-designed templates were usekiare some logical order
to each tile, but with enough compositional variation th&GME is responsible for
the overall arrangement. Map, therefore, is a two-dimensional array of map tiles, and
the CCE process operates at no more detailed a level thanilesg/hen performing
operations such as crossover.

The fitness function scores highly those maps which do notvathe player to
leave the map bounds. It also heavily relies on playoutsgaisg a higher fitness to
those maps which have initially small reachable fractidmg,whose maximal reach-
able fraction (having collected all relevant powerups)ighhWe discount the fithess
for contributions made to reachability early on in the gamd towards the end. The
intention here is to encourage steady progress througheuwydme, where powerups
make an increasing contribution to the player’s abilitaas] then after the game’s mid-
point, the player makes progressively smaller advancearttsithe exit. To describe the
fithess function, first consider the game as a list of ‘stagesjinning with the player
start (ps), culminating with the exitg.), and with intermediate stages representing the
collection of a powerup. We represent the list of stage$ aspup®, . . ., pup™, pe |.

Initial Results From Co-operative Co-evolution for Autae Platformer Design 5

Letrch(z) be a function that returns the percentage of the map thaacheble at
stager of the game (but not reachable in the previous state). Thelighof stages con-
tributes to the overall fithess proportionally, using frastl variablesi; as discounting
factors to reduce the contributions made by each stage:

dy xrch(ps)+dg xrch(pupt)+. .. dy xreh(pup™)+. . . do xrch(pup™)+dy x rch(pe)

whereVaVy x <y = d, < d,. The fitness function also assigns higher fitness to
maps with longer paths between the start and the exit. In games, it is considered
poor practice to arbitrarily extend the player’'s path; hegredue to the large state
spaces inherent in ACCME, it is important to keep the mapdismahile utilising as
much of the space available as possible. Our intention wgenerate games in which
the optimal path through the map passes through as many fteapat possible, to
maximise the utilisation of the space available.

Crossover of two maps produces child amps that inherit ed@hernating rows or
columns of the two parent maps. Mutation of a map replacesnsbeu of randomly
selected map tiles with newly generated ones, with a maxiratifour replacements
per map per mutation.

Power sets The fitness function for a powerset assigns fithess propwtim the
amount of increase in reachability each powerup providagdat data is used to calcu-
late this, and to calculate which powerups are reachabtbéether powerups can be
collected in multiple orders, or whether there is a lineagpession through the game).
We employ the notion of &race objectwhich describes all possible routes through the
game, recording the order in which powerups are collectedyell as if the exit is
reachable. This is expressed as an ordering on the set ofppsy€. We are interested
in traces where this ordering is partial, rather than tatslplayer choice is a desirable
factor in the design of Metroidvania games. We define a tlaes a list of powerups,
{p1,...,pn} C P, whereP is the set of all powerups in the game. We denote that the
predicateterm(T') holds if, after executing the trace T, the player is able txhethe
exit. We increase the fitness of a powerset relative to thebeuwflegitimate tracest
has in its trace object, whefis legitimate <= VI’ € (P(T)\ {T'}) . ~term(T").

Note thatP(T') is the power set of the set of powerups The above states that
any sequence of powerups smaller th&mwould not permit the player to reach the
exit. Preliminary experimentation showed this to be a usefilancing factor which
encourages multiple traces through a game, but penalisggden which the player is
able to bypass a section of the game and ignore some powenrtipedye We also add
value to a powerset's fithess relative to the average disthetween each powerup. We
calculate distance between objects by performing an A*ckean the reachability map.

Powersets are crossed over by creating child powersetatidamly select powerups
from the two parents, with a small chance to generate anegntilew powerup in-
stead of inheriting from either. Mutation of a powerup ramikes the magnitude of the
change the powerup makes to its target variable.

Layouts The layout species is concerned with designing the enengstypesent in
the game and placing them within the map along with the plag#arting location and
the level's exit location. The task of enemy design is simitathe design of entities
in the experiment described in [10]. We initially give vepm fithnesses to any illegal

6 Co-operative Co-evolution for Automated Platformer [@asi

or invalid placements. For ACCME, this involves penalisiogenemies, player char-
acter or exit locations that are placed in walls. We pendlesvily for layouts that do
not allow the player to reach the exit. To evaluate this, we the same reachability
calculations as present in the powerset evaluation destebove.

Figure 1(b) shows a subsection of a game design. The plagerdi@ section A, in
which there is a powerup that allows access to section B. \&ftiiy these sections by
calculating the player’s reachability potential afterking up powerups in the game.
We then reward layouts that introduce archetypes gradusdlyhat sections that are
explored later in the game are more likely to have the fulesbn of archetypes,
whereas sections explored early in the game may only haviessesu

Layouts are crossed over by exchanging locations of enerhetmpes, exit and
player locations, and designs for archetypes themselvessGver can also switch the
enemies of map tiles, in much the same way that map crossgekaeges map tiles,
that is either by row, column or single tile. Mutation is apgito make small changes
to the location of enemies, player start location and ganite ddxtation can also ran-
domly change features in an enemy archetype, altering thement type or adding
and removing behaviours.

3.3 Playoutsand Reachability

ACCME performs playouts in order to take a game state anthiésiavhich regions of
its map are currently reachable. The system can apply p@séoichange variables that
affect reachability. Calculation of the reachable are@isgutationally expensive given
the number of games assessed in a run of the system (althoimgtididual reachability
check merely tests each reachable tile for nearby reactikdslea sample run described
in section 3.5 evaluates over 240,000 games). ACCME mamtamnopen listof map
locations that are known to be reachable, initialised wlith $tarting location. Upon
removing a new location from the open list, it checks thregsjile scenarios:

Jumping If the player is standing on solid ground, they are capablgimiping.
The formula used to calculate the potential height of thegusisq,¢> /29, whereg
is gravity, expressed in pixels per second per secondVad; is the upward force
applied by the jump operation, also expressed in pixels gared.

The formula for jump height, combined with the knowledget tharizontal force
can be applied regardless of the player’s position, allogvsoucalculate the space in
which the player has a positive vertical velocity (ttigng areg by simply applying
the maximum horizontal force in both directions for the diaraof the jump. We then
traverse the map locations in this area, and for each latat® test to see if there
are obstructions between the starting location and thetalfghere is not, the area is
reachable, and is added to the open list. We found that uisiagf-sight as a check for
accessibility is a cheap but effective method for decidirigethier or not an area was
reachable.

Walking If the player is on solid ground, we perform a Walking chetlk ¢ontigu-
ous area of solid ground extends left or right of the curreoation, then the locations
above this solid ground are also considered reachableh€lps cover some map areas
that would otherwise take a longer time to detect using amyging and falling.

Initial Results From Co-operative Co-evolution for Autae Platformer Design 7

Falling If the player is not on solid ground, then they are fallingisTmay be
because they have walked off the edge of a platform, or arg@ijugmIn this case, we
calculate the horizontal extent of a jump to simulate theyga descent and label
areas that are reachable during the fall. Because the magexpply horizontal velocity
during a fall, this is different to a real-world physics silation.

Quality and Accuracy of Reachability Estimations The above cases provide an es-
timate of reachability, allowing ACCME to assess levels auier where the player can
and cannot reach without having to simulate a full game playBy avoiding such ex-
tensive simulation, we are able to greatly reduce the caoxitplef evaluating a game
without much loss in reachability data; however, extensienACCME’s domain that
allow for other kinds of obstacles (such as enemies whichatlme destroyed) would,
we think, require a full simulation in order to fully asseastime reachability.

In deciding how best to estimate reachability, we opted &ysiem which, at worst,
underestimatethe amount of reachable map space. Overestimating in theswauld
produce games that were potentially unsolvable, but by tastienating we merely al-
low for the fact that through application of skill the playeay be able to bypass certain
sections of the game level (by reaching areas which ACCMEflaaded as unreach-
able). Such situations are not uncommon for games, and igvéaspeed runswhere
players use such design flaws to complete a game in the fasiesble time[16].

A pilot study outlined in section 3.5 showed that, since hednility was not bidi-
rectional, ACCME was unable to differentiate between atkaswere reachable, and
areas that could be reached and then returned from. ThisdaAGCME to design
games with one-way jumps and inescapable pits. We modifiecdftware to use a
single additional check per reachable map tile to deted¢tdan be exited as well as
entered. We proportionally reduce the fitness of maps thabaodead ends — this still
allows for situations where a player is able to escape a dehbyobtaining a powerup.

3.4 Evolutionary Setup

A typical execution of the software is composed of 400 getmara, undertaken with
each species maintaining a population of 200 solutions. tillselia steady-state, elitist
selection method, with the fittest 10% comprising the parefithe next generation.
The parents are also included for another generation ofiggal this is to allow trends
to emerge more readily from the co-operating species, agimxiprogress towards
co-operation is not lost between generations. We expetidesith the application of
some other selection techniques such as roulette-basedaapes, but found them to
be considerably less reliable. We plan to explore other serdmiques in future work.

3.5 Evaluation

Effectiveness of CCE To compare the results of CCE with selecting from a compa-
rable population of randomly-generated games, we gerteP4t@ 000 game designs at
random and evaluated them using the same fitness functiah&@CME uses. The
fitness of the highest-scoring game is shown as a dashedlFigure 2. On the same
graph, the line shows the fithness change over 400 gener&ioA€ CME running as a
co-operative co-evolutionary process with three speeiash with a population of 200
members. Each species evaluates against only the fittesbenemf the other species,

8 Co-operative Co-evolution for Automated Platformer [@asi

Fitness
-

250 =

200 P~ focm

150 |-

1 1 i 1 PN 1 1
100 200 300 400

Number of Generations

Fig. 2: A standard run of ACCME against a comparable randarcee

o

hence ACCME evaluated 600 games per generation. The grapls shclear improve-

ment over random generation after only a handful of geraratiand also highlights the
fast convergence of ACCME. The strength of the convergerasepuint to a weakness
in the CCE system, a matter which we discuss in section 4.

The early spike seen in figure 2 highlights a game with higheesis than those of
the final generations. We select our output from the final g run, because we
posit that these games exhibit the strongest co-operatiits,tso a spike of this nature
is, we believe, caused by one of the three species presentiery high-fitness solution
that counterbalances lower-fitness solutions in otherispe€CE processes fluctuate
wildly during the early stages of generation. At these staffee species are far from
co-operative, which means that the change between gemesasi often very large as
they try to compensate for the lack of co-operation. We ptaexamine such spikes
in further work, as it may indicate that our fitness functi@ne not balanced in their
evaluation of co-operative fitness, or that our method oftssising fitness evaluations
from the co-operating processes is not the best way of evaduaverall fitness.

Pilot Study We performed a pilot study to assess player response to thegpro-
duced, and to highlight issues in player evaluation of theem 180 players played
the same game and rated it between 1 and 5. Qualitative feledbas also sought
to gain insight into player reactions. From the responsesmade several improve-
ments to ACCME, including developing its understanding edahability to include
dead end detection (described in section 3.3). We notedpthgiers’ responses fre-
quently highlighted areas of the game that were not ACCM&sponsibility — such as
control schemes or art direction. We discuss this in sectiomthe context of future
work.

Comparative Study Following the pilot study, we performed a second smalledygtu
in which 35 participants, responding to a call sent out to1B@ pilot study partici-
pants, were asked to play three games designed by ACCME. B&edhree games
with fitness valuations of 436, 310 and 183, labelled highdioma and low fitness re-
spectively, to represent a range of game fitnesses. Theall@dlgames were presented
to each participant in a randomly-selected order, and thtecpants were asked to rank
the games in terms of perceived quality after playing akéhiOur hypothesis was that

Initial Results From Co-operative Co-evolution for Autae Platformer Design 9

Best RankMiddle RankWorst Rank
HighFithessGame 19 9 11
MedFitnessGanle 9 15 15
LowFitnessGame 11 15 13

Fig. 3: Data showing frequencies of ranks for the compagatiudy.

higher-fitness games should be preferable to players thadfittoess games. For our
study data, we found a greater proportion of high fithess gamere ranked highest:
49% compared to 25% for low/medium fithness games. Howevekeffiect was not sig-

nificant (chi-squared, p=0.15). We found a very weak buginigicant rank correlation

between fitness and player preference, (Kendalts0.11, p = 0.17). In both tests, we
were unable to reject the null hypothesis. Although thesalte are inconclusive, the
data suggests to us that there may be some effect of fitnessefargnce, but further

study is required to investigate the relationship.

One key piece of written feedback we received was that soaye felt the games
were too similar. This is partly down to commonality in fessi not designed by AC-
CME. However, the repeated nature of the goals and thectgtrset of powerups from
which ACCME chooses from also contributed to this. In a ¢veaiask such as game
design, the ability to create novelty is crucial, and ACCM&es not appear capable
of this in its current state. The brevity of the three games alao mentioned in some
written feedback as a negative quality. The games in theystiede restricted to 3x3
map tiles; given that a key element in Metroidvania gamesaslgal exploration, it is
conceivable that the games did not last long enough for tageps to experience this
sense of gradual exploration. Hence, larger game sizest imiginove future studies.

4 Conclusionsand Further Work

We have introduced co-operative co-evolution in the caraéautomated game design,
and presented ACCME, a system for designing simple Meteoig/platform games
using CCE, reachability analysis and a flexible powerupesystVe have shown CCE
to be effective at developing high-fithess solutions, budragarative study shows a gap
between ACCME's concept of fithess and player preference.

The pilot study highlighted many difficulties in the evalioat of automatically-
designed games by humans. The task of distinguishing desisiade by the automated
designer, and decisions made by the authors in construtigngamework, is difficult.
We received comments on aspects of the design that ACCME egp®nsible for, as
well as things inherent in the template game supplied to AECIVhis shows a need
for more forethought in presenting automatically desiggaehes to players in future.

Our later comparative study highlighted the similaritiegames produced by AC-
CME, even when the system considers there to be large diffesdn fitness. This leads
us to two areas of further work. Firstly, we plan to reconsttie fitness valuations used,
in order to strengthen some areas of evaluation, and addvivaleations to emphasise
some areas that playtesters perceived as lacking, sucfiiesiti. One approach might
be to simulate simplified combat, reducing the game to alased simulation, thereby
discretising and simplifying the evaluation. Secondlynay be necessary to focus our

10 Co-operative Co-evolution for Automated PlatformeriDes

surveys in future to avoid general concepts such as prefer@rfun. Designing exper-
iments to evaluate specific parts of a design, such as leyeltar powerup design,
may provide a better way of estimating the impact of a systech as ACCME.

We noted earlier that ACCME converges on a solution veryldui€CE has unique
problems associated with it that affects its ability to l@cglobal optima, which we are
yet to investigate in ACCME. Such problems are discussetiZhdnd some solutions
proposedin [18]. We aim to apply these ideas to ACCME in thettbat it will improve
the process. We also wish to investigate alternative sefentethods for the evolution.
All of the games listed in this paper can be played online tgtHbit.ly/gbangelina.

5 Acknowledgements

The authors would like to thank Zack Johnson, Kevin Simmants Riff Conner for
their insight into Metroidvania design. We also thank theraimous reviewers for their
helpful comments and suggestions which have helped impgha/paper.

References

1. J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hadelbad G. Yannakakis, “Multiob-
jective exploration of the Starcraft map space,’Proc. of 2010 IEEE Conf. on Computa-
tional Intelligence and Games

2. D. Ashlock, C. Lee, and C. McGuinness, “Search based guraégeneration of maze-like
levels,” inIEEE Transactions on Computational Intelligence and Al ian@s vol. 3, issue
3, pp. 260-273, 2011.

3. G. Smith, M. Treanor, J. Whitehead, and M. Mateas, “Rhybiased level generation for 2D
platformers,” inProc. of the 4th International Conf. on Foundations of DagiGames2009.

4. L. Cardamone, G. Yannakakis, J. Togelius, and P. LanzioREng interesting maps for a
first person shooter,” idpplications of Evolutionary Computatipwol. 6624, 2011.

5. E. J. Hastings, R. K. Guha, and K. O. Stanley, “Evolvingteahin the galactic arms race
video game,” inProc. of 2009 IEEE Conf. on Computational Intelligence araht@&s

6. A. Liapis, G. Yannakakis, and J. Togelius, “Neuroevalngéry constrained optimization for
content creation,” ifProc. of 2011 IEEE Conf. on Computational Intelligence arah@s

7. M. Nelson and M. Mateas, “Towards automated game dedigdftificial Intelligence and
Human-Oriented Computingp. 626—637, 2007.

8. C. Browne and F. Maire, “Evolutionary game design,” IBREE Transactions on
Computational Intelligence in Al and Gamesl. 2, issue 1, 2010.

9. J. Togelius and J. Schmidhuber, “An experiment in autangme design,” ifProceedings
of 2008 IEEE Conference on Computational Intelligence aath@s

10. M. Cook and S. Colton, “Multi-faceted evolution of sira@rcade games,” iroc. of 2011
IEEE Conference on Computational Intelligence and Games

11. M. Potter and K. de Jong, “A cooperative coevolutiongraach to function optimization,”
in Parallel Problem Solving from Nature PPSN,I\ol. 886, pp. 249-257, 1994.

12. S. Sharkey and J. Parigbebunking Metroidvaniahttp://www.bit.ly/wiredmv/

13. Metroidvania Gaming Wikia. http://gaming.wikia.com/wiki/Metroidx&

14. Knytt StoriesNifflas Games, 2007. http://nifflas.ni2.se/

15. SpelunkyMossmouth Games, 2009. http://www.spelunkyworld.com

16. Portal Done Pro - SpeedryemonsStrate, 2010. http://www.j.mp/ygoJLh

17. R. Wiegand, “An analysis of cooperative coevolutionalyorithms,” Ph.D. dissertation,
George Mason University, USA, 2004.

18. A. Bucci and J. B. Pollack, “On identifying global optirracooperative coevolution,” in
Proc. of the 2005 Conf. on Genetic and Evolutionary Comprtat

