
Initial Results From Co-operative Co-evolution
for Automated Platformer Design

Michael Cook, Simon Colton, and Jeremy Gow

Computational Creativity Group, Imperial College, London
http://ccg.doc.ic.ac.uk

Abstract. We present initial results from ACCME, A Co-operative Co-evolutionary
Metroidvania Engine, which uses co-operative co-evolution to automatically evolve
simple platform games. We describe the system in detail and justify the use of
co-operative co-evolution. We then address two fundamental questions about the
use of this method in automated game design, both in terms of its ability to max-
imise fitness functions, and whether our choice of fitness function produces scores
which correlate with player preference in the resulting games.

Keywords: automated game design, procedural generation, co-operative co-evolution

1 Introduction

Procedural content generation (PCG) is a highly active areaof research that offers effec-
tive methods for generating a wide variety of game content. PCG systems tend to work
in isolation, often as a supplement to a human-designed system, designing aspects of
the game’s world [1–4]; generating items or abilities suited to the individual currently
playing [5, 6]; or generating quests or tasks for the player to undertake [7–9]. However,
automating design as a whole – that is, the design of a game solely by a system and
without direct human judgement – remains largely uninvestigated.

The problem of automated game design is an attractive one to address, because it
not only provides us with a basis to build stronger, more capable procedural content
generation systems, but also allows for more intelligent design systems, representing
a move away from merely creating content and towards co-operating with a human
designer on a shared creative task. We have shown in [10] thatautomated game design
systems can help complete partially-specified designs – further work building systems
such as this will drive the development of assistive design tools.

The remainder of this paper is organised as follows: in section 2, we introduce co-
operative co-evolution, prior work in this area, and related work in automated game
design. In section 3, we present ACCME, a system which employs co-operative co-
evolution to automatically design 2D platform games. We give details of experiments
conducted using ACCME to investigate the effectiveness of computational co-evolution
as an automated design technique. In section 4, we present conclusions and look at
future work in the area.

2 Background

A co-operative co-evolutionary (CCE) system solves a problem by decomposing it into
several subtasks calledspecies. These are represented as independent evolutionary pro-

2 Co-operative Co-evolution for Automated Platformer Design

cesses that are evaluated by recomposing members from each population into solutions
to the original problem, and evaluating the quality of the complete solution. A CCE
system decomposes a problem,P , inton subtasks,P1, . . . , Pn, where asolutionfor P
is a set{p1, . . . , pn} with pi ∈ Pi.

A fitness function for such a system evaluates a solution to the larger supertask
P , rather than evaluating members of a subtask’s population.Therefore, to evaluate a
member,px, of the subtaskPx’s population, we extract the most fit member of every
other subtask’s population, compose this set to form a solution to P , and apply the
fitness function to this hybrid solution. The notion of ‘co-operative’ evolution refers to
the way in which the fitness of the solution is directly related to how wellpx co-operates
with the other components of the solution. Since these othern − 1 components do not
change during the evaluation of the populationPx, the fitness represents how well a
member of the population ofPx contributes to the overall solution.

Co-operative co-evolution was proposed in [11] by Potter and De Jong, in the con-
text of function optimisation problems. They state that “inorder to evolve more complex
structures, explicit notions of modularity need to be introduced in order to provide rea-
sonable opportunities for complex solutions to evolve”. Wehold that for creative tasks
such as game design, a similar level of modularity is desirable.

The ANGELINA System

In [10], we presented ANGELINA, a system that designs arcadegames using co-
operative co-evolution. We decomposed the task of designing such games into several
species, each of which is responsible for a certain aspect ofthe design. The three species
generatemaps, two-dimensional arrays that describe passable and impassable areas in
the game’s level;layouts, which specify the arrangement of red, green and blue entities
in the game world as well as the play character; andrulesets, which describe the way in
which the non-player entities moved, and also define one or more rules that describe the
effects of certain types of entity, player or obstacle colliding with one another. A combi-
nation of a map, layout and ruleset defined a game. We performed several experiments
to support the claim that CCE is able to rediscover existing games in the target domain,
such as PacMan, as well as games that were novel. In [10] we describe a demonstra-
tion of the software running independently to design games,and an assistive task where
ANGELINA is given hand-designed maps and produces suitablerulesets and layouts.

Related Work

Although we are not aware of any other work which addresses the problem of automat-
ing whole game design, there are other related projects. In [9], the authors evolve rule-
sets for arcade games. The system uses a neural network to learn rulesets. The fitness
of games is based on how hard or easy they were for the network to learn. This work
inspired the design of our domain in [10]. In [7], Nelson and Mateas evolve simple
‘minigames’ by interpreting terms that describe actions orsubjects. The work is in-
teresting in terms of higher-level design tasks relating tothe interpretation of themes
and their relation to game mechanics, although the work doesnot specifically tackle
interrelated or co-operating design tasks.

In [8], Browne and Maire present a system for automatically designing board games.
The underlying task of designing a set of rules that govern ludic interactions is common

Initial Results From Co-operative Co-evolution for Automated Platformer Design 3

to both projects. The work is primarily involved in both identifying ‘indicators of game
quality’ and subsequently applying these as heuristics in an evolutionary process for
generating games. The work culminated in major successes inthe area, including the
publishing of some computer-generated game designs as commercial board games.

3 ACCME

Metroidvania is a subgenre of 2D platform games. The term, a portmanteau oftwo
games that popularised the genre, was coined by Sharkey [12]. Metroidvania games are
“based... on exploration with areas that [can] only be reached after attaining items in
other areas” [13]. Contemporary examples vary from casual to more challenging games
[14, 15]. The subgenre’s core concepts lend themselves wellto fitness functions.

ACCME is a system we have developed that designs such games using CCE, built
on an evolutionary framework derived from [10]. ACCME is comprised of a Map
species, a Layout species and a Powerset species. We first show how ACCME rep-
resents a game, then examine the species making up the CCE process and how playouts
were implemented. We also detail some evaluative work whichinvestigates the useful-
ness of CCE and the relationship between our definition of fitness and game quality.

3.1 Representation

A game is represented as a 3-tuple consisting of a Map, a Layout and a list of powerups
called aPowerset. A map is a two-dimensional array of integers, where each integer in
the array maps to an 8x8 pixel tile within the finished game. Anzero value in the array
describes an empty space, and any value greater than zero represents some tile texture
(such as grass, or water). Acollision index, i, is chosen such that any integer less than or
equal toi is non-solid in the game world. This is used to define which integers describe
solid platforms and walls, and which describe scenery. The collision index allows for
tiles to change at runtime, allowing the representation of locked and unlockable doors.

A layout defines what we callarchetypes, a description of a class of enemy. An
archetype consists of one or moreactionsand amovement behaviour. Movement be-
haviours describe how the enemy moves through the game, selected from one ofSTATIC,
where the enemy does not move,PATROLS, where the enemy moves horizontally un-
til it meets an obstruction or there is no solid ground to walkon, andFLIES, which
is similar to patrolling but does not require solid ground. Actions describe things that
enemies can do during the game that provide a challenge to theplayer or somehow dif-
ferentiate their behaviour from other enemies. An archetype has zero or more actions,
selected fromTURRET, which fires a projectile at the player whenever they are within a
certain sight range,POUNCE, which causes the enemy to leap towards the player when
they have an unbroken line of sight, andMISSILE, which fires a slower projectile that
follows the player. A layout also contains a list of enemies,which are described by
an (x, y) starting co-ordinate in the map, and an archetype number. The layout also
describes the player’s starting location and the location of the exit to the game.

A powerset is a list of powerups. A powerup is described by a co-ordinate repre-
senting its location in the map, as well as atarget variableand atarget value. When
the player touches the powerup, the target variable is changed within the game code so

4 Co-operative Co-evolution for Automated Platformer Design

(a) (b)

Fig. 1: Screenshots showing map templates (left) and regions (right).

that its value becomes that of the target value. There are three target variables avail-
able to ACCME -jumpVelocity, which describes the velocity applied to the player
when the jump key is pressed,globalAccelerationY, which describes the effect
of gravity applied to game objects, andcollisionIndex which defines the integer
value above which map tiles are considered solid. Target values are chosen from an
integer range defined appropriately for each powerup.

3.2 CCE Species
Maps are constructed out of smaller two-dimensional arrays of fixed width and height
calledMap Tiles. The specific layout of a map tile is selected from one of 13 outer
templates (defining the border around the tile). These outertemplates define tile borders
as blocked or unblocked - for instance, Figure 1(a) shows an outer template where
the lower side of the tile is blocked. We provide all possiblepermutations, with the
exception of the case where all sides are blocked. A map tile also selects one of 12
inner templates, which were hand-made. An example of such a hand-crafted template is
provided in Figure 1a. Hand-designed templates were used toensure some logical order
to each tile, but with enough compositional variation that ACCME is responsible for
the overall arrangement. AMap, therefore, is a two-dimensional array of map tiles, and
the CCE process operates at no more detailed a level than map tiles when performing
operations such as crossover.

The fitness function scores highly those maps which do not allow the player to
leave the map bounds. It also heavily relies on playouts, assigning a higher fitness to
those maps which have initially small reachable fractions,but whose maximal reach-
able fraction (having collected all relevant powerups) is high. We discount the fitness
for contributions made to reachability early on in the game and towards the end. The
intention here is to encourage steady progress throughout the game, where powerups
make an increasing contribution to the player’s abilities,and then after the game’s mid-
point, the player makes progressively smaller advances towards the exit. To describe the
fitness function, first consider the game as a list of ‘stages’, beginning with the player
start (ps), culminating with the exit (pe), and with intermediate stages representing the
collection of a powerup. We represent the list of stages as:[ps, pup

1, . . . , pupn, pe].

Initial Results From Co-operative Co-evolution for Automated Platformer Design 5

Let rch(x) be a function that returns the percentage of the map that is reachable at
stagex of the game (but not reachable in the previous state). Then this list of stages con-
tributes to the overall fitness proportionally, using fractional variablesdi as discounting
factors to reduce the contributions made by each stage:

d1×rch(ps)+d2×rch(pup1)+. . . dx×rch(pupm)+. . . d2×rch(pupn)+d1×rch(pe)

where∀x∀y x < y =⇒ dx < dy. The fitness function also assigns higher fitness to
maps with longer paths between the start and the exit. In manygames, it is considered
poor practice to arbitrarily extend the player’s path; however, due to the large state
spaces inherent in ACCME, it is important to keep the maps small, while utilising as
much of the space available as possible. Our intention was togenerate games in which
the optimal path through the map passes through as many map tiles as possible, to
maximise the utilisation of the space available.

Crossover of two maps produces child amps that inherit either alternating rows or
columns of the two parent maps. Mutation of a map replaces a number of randomly
selected map tiles with newly generated ones, with a maximumof four replacements
per map per mutation.

Powersets The fitness function for a powerset assigns fitness proportional to the
amount of increase in reachability each powerup provides. Playout data is used to calcu-
late this, and to calculate which powerups are reachable (and whether powerups can be
collected in multiple orders, or whether there is a linear progression through the game).
We employ the notion of atrace objectwhich describes all possible routes through the
game, recording the order in which powerups are collected, as well as if the exit is
reachable. This is expressed as an ordering on the set of powerups,P . We are interested
in traces where this ordering is partial, rather than total,as player choice is a desirable
factor in the design of Metroidvania games. We define a traceT as a list of powerups,
{p1, . . . , pn} ⊆ P , whereP is the set of all powerups in the game. We denote that the
predicateterm(T) holds if, after executing the trace T, the player is able to reach the
exit. We increase the fitness of a powerset relative to the number of legitimate tracesit
has in its trace object, whereT is legitimate⇐⇒ ∀T ′ ∈ (P(T) \ {T }) . ¬ term(T ′).

Note thatP(T) is the power set of the set of powerupsT . The above states that
any sequence of powerups smaller thanT would not permit the player to reach the
exit. Preliminary experimentation showed this to be a useful balancing factor which
encourages multiple traces through a game, but penalises designs in which the player is
able to bypass a section of the game and ignore some powerups entirely. We also add
value to a powerset’s fitness relative to the average distance between each powerup. We
calculate distance between objects by performing an A* search on the reachability map.

Powersets are crossed over by creating child powersets thatrandomly select powerups
from the two parents, with a small chance to generate an entirely new powerup in-
stead of inheriting from either. Mutation of a powerup randomises the magnitude of the
change the powerup makes to its target variable.

Layouts The layout species is concerned with designing the enemy types present in
the game and placing them within the map along with the player’s starting location and
the level’s exit location. The task of enemy design is similar to the design of entities
in the experiment described in [10]. We initially give very low fitnesses to any illegal

6 Co-operative Co-evolution for Automated Platformer Design

or invalid placements. For ACCME, this involves penalisingfor enemies, player char-
acter or exit locations that are placed in walls. We penaliseheavily for layouts that do
not allow the player to reach the exit. To evaluate this, we use the same reachability
calculations as present in the powerset evaluation described above.

Figure 1(b) shows a subsection of a game design. The player begins in section A, in
which there is a powerup that allows access to section B. We identify these sections by
calculating the player’s reachability potential after picking up powerups in the game.
We then reward layouts that introduce archetypes gradually, so that sections that are
explored later in the game are more likely to have the full selection of archetypes,
whereas sections explored early in the game may only have a subset.

Layouts are crossed over by exchanging locations of enemy archetypes, exit and
player locations, and designs for archetypes themselves. Crossover can also switch the
enemies of map tiles, in much the same way that map crossover exchanges map tiles,
that is either by row, column or single tile. Mutation is applied to make small changes
to the location of enemies, player start location and game exit. Mutation can also ran-
domly change features in an enemy archetype, altering the movement type or adding
and removing behaviours.

3.3 Playouts and Reachability

ACCME performs playouts in order to take a game state and establish which regions of
its map are currently reachable. The system can apply powerups to change variables that
affect reachability. Calculation of the reachable area is computationally expensive given
the number of games assessed in a run of the system (although an individual reachability
check merely tests each reachable tile for nearby reachabletiles, a sample run described
in section 3.5 evaluates over 240,000 games). ACCME maintains anopen listof map
locations that are known to be reachable, initialised with the starting location. Upon
removing a new location from the open list, it checks three possible scenarios:

Jumping If the player is standing on solid ground, they are capable ofjumping.
The formula used to calculate the potential height of the jump is Vstart

2/2g, whereg
is gravity, expressed in pixels per second per second, andVstart is the upward force
applied by the jump operation, also expressed in pixels per second.

The formula for jump height, combined with the knowledge that horizontal force
can be applied regardless of the player’s position, allows us to calculate the space in
which the player has a positive vertical velocity (therising area) by simply applying
the maximum horizontal force in both directions for the duration of the jump. We then
traverse the map locations in this area, and for each location we test to see if there
are obstructions between the starting location and the target. If there is not, the area is
reachable, and is added to the open list. We found that using line-of-sight as a check for
accessibility is a cheap but effective method for deciding whether or not an area was
reachable.

Walking If the player is on solid ground, we perform a Walking check. If a contigu-
ous area of solid ground extends left or right of the current location, then the locations
above this solid ground are also considered reachable. Thishelps cover some map areas
that would otherwise take a longer time to detect using only jumping and falling.

Initial Results From Co-operative Co-evolution for Automated Platformer Design 7

Falling If the player is not on solid ground, then they are falling. This may be
because they have walked off the edge of a platform, or are jumping. In this case, we
calculate the horizontal extent of a jump to simulate the player’s descent and label
areas that are reachable during the fall. Because the playercan apply horizontal velocity
during a fall, this is different to a real-world physics simulation.

Quality and Accuracy of Reachability Estimations The above cases provide an es-
timate of reachability, allowing ACCME to assess levels andinfer where the player can
and cannot reach without having to simulate a full game playout. By avoiding such ex-
tensive simulation, we are able to greatly reduce the complexity of evaluating a game
without much loss in reachability data; however, extensions to ACCME’s domain that
allow for other kinds of obstacles (such as enemies which cannot be destroyed) would,
we think, require a full simulation in order to fully assess runtime reachability.

In deciding how best to estimate reachability, we opted for asystem which, at worst,
underestimatesthe amount of reachable map space. Overestimating in this case would
produce games that were potentially unsolvable, but by underestimating we merely al-
low for the fact that through application of skill the playermay be able to bypass certain
sections of the game level (by reaching areas which ACCME hadflagged as unreach-
able). Such situations are not uncommon for games, and give rise tospeed runs, where
players use such design flaws to complete a game in the fastestpossible time[16].

A pilot study outlined in section 3.5 showed that, since reachability was not bidi-
rectional, ACCME was unable to differentiate between areasthat were reachable, and
areas that could be reached and then returned from. This caused ACCME to design
games with one-way jumps and inescapable pits. We modified the software to use a
single additional check per reachable map tile to detect if it can be exited as well as
entered. We proportionally reduce the fitness of maps that contain dead ends – this still
allows for situations where a player is able to escape a dead end by obtaining a powerup.

3.4 Evolutionary Setup

A typical execution of the software is composed of 400 generations, undertaken with
each species maintaining a population of 200 solutions. We utilise a steady-state, elitist
selection method, with the fittest 10% comprising the parents of the next generation.
The parents are also included for another generation of evolution; this is to allow trends
to emerge more readily from the co-operating species, as existing progress towards
co-operation is not lost between generations. We experimented with the application of
some other selection techniques such as roulette-based approaches, but found them to
be considerably less reliable. We plan to explore other suchtechniques in future work.

3.5 Evaluation

Effectiveness of CCE To compare the results of CCE with selecting from a compa-
rable population of randomly-generated games, we generated 240,000 game designs at
random and evaluated them using the same fitness functions that ACCME uses. The
fitness of the highest-scoring game is shown as a dashed line in Figure 2. On the same
graph, the line shows the fitness change over 400 generationsfor ACCME running as a
co-operative co-evolutionary process with three species,each with a population of 200
members. Each species evaluates against only the fittest members of the other species,

8 Co-operative Co-evolution for Automated Platformer Design

Fig. 2: A standard run of ACCME against a comparable random search.

hence ACCME evaluated 600 games per generation. The graph shows a clear improve-
ment over random generation after only a handful of generations, and also highlights the
fast convergence of ACCME. The strength of the convergence may point to a weakness
in the CCE system, a matter which we discuss in section 4.

The early spike seen in figure 2 highlights a game with higher fitness than those of
the final generations. We select our output from the final generation run, because we
posit that these games exhibit the strongest co-operative traits, so a spike of this nature
is, we believe, caused by one of the three species presentinga very high-fitness solution
that counterbalances lower-fitness solutions in other species. CCE processes fluctuate
wildly during the early stages of generation. At these stages, the species are far from
co-operative, which means that the change between generations is often very large as
they try to compensate for the lack of co-operation. We plan to examine such spikes
in further work, as it may indicate that our fitness functionsare not balanced in their
evaluation of co-operative fitness, or that our method of synthesising fitness evaluations
from the co-operating processes is not the best way of evaluating overall fitness.

Pilot Study We performed a pilot study to assess player response to the games pro-
duced, and to highlight issues in player evaluation of the games. 180 players played
the same game and rated it between 1 and 5. Qualitative feedback was also sought
to gain insight into player reactions. From the responses, we made several improve-
ments to ACCME, including developing its understanding of reachability to include
dead end detection (described in section 3.3). We noted thatplayers’ responses fre-
quently highlighted areas of the game that were not ACCME’s responsibility – such as
control schemes or art direction. We discuss this in section4 in the context of future
work.

Comparative Study Following the pilot study, we performed a second smaller study
in which 35 participants, responding to a call sent out to the180 pilot study partici-
pants, were asked to play three games designed by ACCME. We chose three games
with fitness valuations of 436, 310 and 183, labelled high, medium and low fitness re-
spectively, to represent a range of game fitnesses. The unlabelled games were presented
to each participant in a randomly-selected order, and the participants were asked to rank
the games in terms of perceived quality after playing all three. Our hypothesis was that

Initial Results From Co-operative Co-evolution for Automated Platformer Design 9

Best RankMiddle RankWorst Rank
HighFitnessGame 19 9 11
MedFitnessGame 9 15 15
LowFitnessGame 11 15 13

Fig. 3: Data showing frequencies of ranks for the comparative study.

higher-fitness games should be preferable to players than low-fitness games. For our
study data, we found a greater proportion of high fitness games were ranked highest:
49% compared to 25% for low/medium fitness games. However, the effect was not sig-
nificant (chi-squared, p=0.15). We found a very weak but insignificant rank correlation
between fitness and player preference, (Kendall’sτ = 0.11, p = 0.17). In both tests, we
were unable to reject the null hypothesis. Although these results are inconclusive, the
data suggests to us that there may be some effect of fitness on preference, but further
study is required to investigate the relationship.

One key piece of written feedback we received was that some players felt the games
were too similar. This is partly down to commonality in features not designed by AC-
CME. However, the repeated nature of the goals and the restrictive set of powerups from
which ACCME chooses from also contributed to this. In a creative task such as game
design, the ability to create novelty is crucial, and ACCME does not appear capable
of this in its current state. The brevity of the three games was also mentioned in some
written feedback as a negative quality. The games in the study were restricted to 3x3
map tiles; given that a key element in Metroidvania games is gradual exploration, it is
conceivable that the games did not last long enough for the players to experience this
sense of gradual exploration. Hence, larger game sizes might improve future studies.

4 Conclusions and Further Work

We have introduced co-operative co-evolution in the context of automated game design,
and presented ACCME, a system for designing simple Metroidvania platform games
using CCE, reachability analysis and a flexible powerup system. We have shown CCE
to be effective at developing high-fitness solutions, but a comparative study shows a gap
between ACCME’s concept of fitness and player preference.

The pilot study highlighted many difficulties in the evaluation of automatically-
designed games by humans. The task of distinguishing decisions made by the automated
designer, and decisions made by the authors in constructingthe framework, is difficult.
We received comments on aspects of the design that ACCME was responsible for, as
well as things inherent in the template game supplied to ACCME. This shows a need
for more forethought in presenting automatically designedgames to players in future.

Our later comparative study highlighted the similarities in games produced by AC-
CME, even when the system considers there to be large differences in fitness. This leads
us to two areas of further work. Firstly, we plan to reconsider the fitness valuations used,
in order to strengthen some areas of evaluation, and add in new valuations to emphasise
some areas that playtesters perceived as lacking, such as difficulty. One approach might
be to simulate simplified combat, reducing the game to a turn-based simulation, thereby
discretising and simplifying the evaluation. Secondly, itmay be necessary to focus our

10 Co-operative Co-evolution for Automated Platformer Design

surveys in future to avoid general concepts such as preference or fun. Designing exper-
iments to evaluate specific parts of a design, such as level layout or powerup design,
may provide a better way of estimating the impact of a system such as ACCME.

We noted earlier that ACCME converges on a solution very quickly. CCE has unique
problems associated with it that affects its ability to locate global optima, which we are
yet to investigate in ACCME. Such problems are discussed in [17] and some solutions
proposed in [18]. We aim to apply these ideas to ACCME in the hope that it will improve
the process. We also wish to investigate alternative selection methods for the evolution.
All of the games listed in this paper can be played online at http://bit.ly/gbangelina.

5 Acknowledgements

The authors would like to thank Zack Johnson, Kevin Simmons and Riff Conner for
their insight into Metroidvania design. We also thank the anonymous reviewers for their
helpful comments and suggestions which have helped improvethe paper.

References

1. J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, and G. Yannakakis, “Multiob-
jective exploration of the Starcraft map space,” inProc. of 2010 IEEE Conf. on Computa-
tional Intelligence and Games.

2. D. Ashlock, C. Lee, and C. McGuinness, “Search based procedural generation of maze-like
levels,” in IEEE Transactions on Computational Intelligence and AI in Games, vol. 3, issue
3, pp. 260-273, 2011.

3. G. Smith, M. Treanor, J. Whitehead, and M. Mateas, “Rhythm-based level generation for 2D
platformers,” inProc. of the 4th International Conf. on Foundations of Digital Games, 2009.

4. L. Cardamone, G. Yannakakis, J. Togelius, and P. Lanzi, “Evolving interesting maps for a
first person shooter,” inApplications of Evolutionary Computation, vol. 6624, 2011.

5. E. J. Hastings, R. K. Guha, and K. O. Stanley, “Evolving content in the galactic arms race
video game,” inProc. of 2009 IEEE Conf. on Computational Intelligence and Games.

6. A. Liapis, G. Yannakakis, and J. Togelius, “Neuroevolutionary constrained optimization for
content creation,” inProc. of 2011 IEEE Conf. on Computational Intelligence and Games.

7. M. Nelson and M. Mateas, “Towards automated game design,”in Artificial Intelligence and
Human-Oriented Computing, pp. 626–637, 2007.

8. C. Browne and F. Maire, “Evolutionary game design,” inIEEE Transactions on
Computational Intelligence in AI and Games, vol. 2, issue 1, 2010.

9. J. Togelius and J. Schmidhuber, “An experiment in automatic game design,” inProceedings
of 2008 IEEE Conference on Computational Intelligence and Games.

10. M. Cook and S. Colton, “Multi-faceted evolution of simple arcade games,” inProc. of 2011
IEEE Conference on Computational Intelligence and Games.

11. M. Potter and K. de Jong, “A cooperative coevolutionary approach to function optimization,”
in Parallel Problem Solving from Nature PPSN III, vol. 886, pp. 249–257, 1994.

12. S. Sharkey and J. Parish,Debunking Metroidvania. http://www.bit.ly/wiredmv/
13. Metroidvania, Gaming Wikia. http://gaming.wikia.com/wiki/Metroidvania
14. Knytt Stories, Nifflas Games, 2007. http://nifflas.ni2.se/
15. Spelunky, Mossmouth Games, 2009. http://www.spelunkyworld.com
16. Portal Done Pro - Speedrun, DemonStrate, 2010. http://www.j.mp/ygoJLh
17. R. Wiegand, “An analysis of cooperative coevolutionaryalgorithms,” Ph.D. dissertation,

George Mason University, USA, 2004.
18. A. Bucci and J. B. Pollack, “On identifying global optimain cooperative coevolution,” in

Proc. of the 2005 Conf. on Genetic and Evolutionary Computation.

