Inferring Design Constraints
From Game Ruleset Analysis

Michael Cook and Simon Colton
The Metamakers Institute
Falmouth University
www.gamesbyangelina.org

Abstract—Designing game rulesets is an important part of
automated game design, and often serves as a foundation for
all other parts of the game, from levels to visuals. Popular
ways of understanding game rulesets include using AI agents
to play the game, which can be unreliable and computationally
expensive, or restricting the design space to a set of known
good game concepts, which can limit innovation and creativity.
In this paper we detail how ANGELINA, an automated game
designer, uses an abductive analysis of game rulesets to rapidly
cull its design space. We show how abduction can be used to
provide an understanding of possible paths through a ruleset,
reduce unplayable or undesirable rulesets without testing, and
can also help discover dynamic heuristics for a game that can
guide subsequent tasks like level design.

I. INTRODUCTION

Automated game design is a growing field of games research
that builds on existing work in generative software, computa-
tional creativity, and general game playing. It centers around
the development of software that can design complete games,
either autonomously or co-creatively with the involvement
of other people. Designing a complete game might include
performing tasks such as inventing game mechanics; designing
levels or game worlds, composing music or designing sound
effects; creating visual assets or an artistic direction; or many
other tasks depending on the kind of game being designed,
and the kind of system being developed.

Many automated game design systems focus on rules-
driven, objective-based games, where the player is presented
with an objective to complete while navigating specific chal-
lenges [1]. Classic arcade games like Space Invaders, Pac-Man
or Frogger fit into this model. These games require a clear
set of rules, with win and loss conditions, and normally also
require levels or starting layouts that pose specific challenge
scenarios for the player. Although these rulesets are usually
deterministic, they often have complex dynamics (in the sense
of [2]) and their own unique set of requirements for what their
levels should contain or challenge the player to do. Combined
with the multiplicatively large state spaces for game rulesets
and level designs, this makes automatically evaluating game
designs very difficult.

Common solutions to this problem include the use of
playouts, where an Al agent plays a game and its playtrace
data is analysed to measure certain things about a game — for
example, the complexity of a puzzle solution, or what score an

Azalea Raad
MPI-SWS
Kaiserslautern, Germany
www.soundandcomplete.org

averagely-performing agent could achieve before losing. How-
ever, playouts are computationally expensive, especially if they
are used to play game designs that have obvious deficiencies
in their design. Other systems use simple analytical techniques
to assess game designs: for example, searching for simple
rule patterns that imply an unplayable game, such as directly
contradictory rules. Although this approach is effective, its use
is currently restricted to very basic inferences.

In this paper we describe how we use abductive reasoning
to analyse generated game rulesets, and how the resulting
analysis helps us remove larger quantities of bad rulesets,
without resorting to more prescriptive generation techniques.
We also show that this abductive analysis of rulesets can reveal
intuitions about a game design, which can be used to constrain
level generation. We also posit how this abductive analysis
might be used to incorporate subjective design constraints into
automated game design.

The remainder of this paper is organised as follows: in
Background we discuss existing approaches to solving the
ruleset generation problem, and introduce the current version
of the ANGELINA automated game design system; in Static
Ruleset Analysis we describe the process of analysing game
rulesets to extract possible routes through the game’s logic;
in Level Constraint Inference we extend this work to show
how it can derive information that can be used to constrain
the level design process; in Design Space Analysis we provide
experimental results showing the impact these techniques have
on the design space; in Discussion and Future Work we
comment on the applicability of this technique to other kinds
of game, and future work in the area; finally, in Conclusions,
we summarise our work.

II. BACKGROUND — RELATED WORK

Automated game designers are tasked with exploring a vast
state space of possible game designs. Each generative subtask
— designing levels, designing game rules, designing objectives
and so forth — is itself a vast possibility space, and when
considered together these spaces exponentially expand and
become tightly coupled to one another — a small change to
a ruleset might render an entire set of levels unplayable or
trivial. There are three broad approaches in existing automated
game design work towards solving this problem.



The first approach is to leverage existing knowledge about
good game design to restrict the search problem. Often this
consists of building a smaller design space populated by
components of existing games, and combining them in ways
that preserve playability. Nelson and Mateas’ work in [3] uses
a ‘stock set of concrete game mechanics’ to build minigames.
Meanwhile, The Game-O-Matic uses ‘micro-rhetorics’ which
describe game components, and combines them using recipes
which ensure the safety of the resulting game design [4]. This
results in good-quality games that are reliably playable. This
approach has some downsides: it is harder to discover new or
surprising game designs this way, for example, as it relies
on remixing to succeed. The Game-O-Matic also eschews
complex level design in exchange for a simpler arrangement of
shapes on the screen, which slightly reduces the complexity of
the design task. Nevertheless, the Game-O-Matic demonstrates
the strength of the micro-rhetoric approach, and is one of the
most accomplished automated game design systems to date.
We employed a similar approach in ANGELINAj, which used
a catalogue of known game mechanics to ensure it always
produced playable rulesets.

Another common approach is to use genre-specific knowl-
edge to focus a system on one particular type of game. In
some sense, every automated game design system uses this
technique, since no system to date has been truly general and
cross-genre. However, systems like Data Adventures [5] or
Puzzle Dice [6] focus on a very specific game structure, and
as such are able to work in a reduced design space, by knowing
in advance what mechanics a game might have, or being able
to define objective functions for search algorithms in advance.
We employed this approach in ANGELINAj3 to narrow our
design focus on Metroidvania-style games, enabling us to
define more specific objective functions for the design of levels
in games the system made.

Finally, many automated game design systems use playouts
to evaluate the games they design. Playouts involve using Al
agents to play the game as a player might, and analysing the
results of those playouts to infer properties about the game.
Togelius and Schmidhuber use playouts to assess how hard a
game is to learn, and from that infer how ‘fun’ the game
might be as a result [7], while Khalifa et al use playouts
to assess ruleset coverage and score achievement [8]. We
have employed playouts in all versions of ANGELINA -
ANGELINA;, for example, used multiple playouts per game
with different settings for each playout agent, to try and
simulate more and less risk averse players.

III. BACKGROUND — ANGELINA

ANGELINA is an automated game design project that has
been in development in some form or another since 2011.
The latest version of the software is developed in Unity, and
currently focuses on two-dimensional, grid-based, turn-based
game design. The software is designed to be run as an always-
on system that is continuously developing games or discov-
ering design knowledge. We call this continuous automated
game design [9]. ANGELINA moves between distinct design

tasks, like creating game logic or designing levels, and updates
a central project file for each game it works on as tasks are
completed. In this paper we focus primarily on the design of
rules and levels in ANGELINA.

ANGELINA describes games using a domain specific lan-
guage similar in structure to VGDL [10] or PuzzleScript [11].
Game descriptions are written in JSON, and broken down
into several sections that describe different parts of the game.
Figure 1 shows a template for a game, with some parts cut
for length, which we will describe in stages below.

The first few lines of a game description are called the
preamble and contain basic information about the game,
including its name, the filename it is saved under, as well as
basic artistic settings like the user interface colour scheme and
background music. Most of these settings are optional but give
the system scope to express a tone or theme through aesthetic
choices. After the preamble is the pieces list, which defines
a set of types of game object used in this game. Each piece
can be instantiated one or more times in a game, and may
be animate or inanimate, but these details are defined later in
the game description. A piece’s definition includes a name, by
which it is referred to in the rules, as well as information on
how to draw the object on-screen.

Most importantly for this paper, the rules section describes
the game’s core logic. It contains two lists: one containing the
main game logic, which is executed at every game step; and
one set of end conditions which describe ways the game can
end, as well as the nature of each ending (such as a win, or
a loss). A rule is comprised of two parts: a trigger, which
is a condition that decides whether or not the rule activates;
and one or more events which are executed in order when
the trigger condition is met. We use a special syntax to allow
events to reference objects ‘in scope’ of the rule: $n references
the nth object mentioned in the rule so far. For example, in
the rule:

"trigger":
"events":

"OVERLAP enemy player",
["DESTROY $2"]

The term $2 refers to the second object in the trigger,
player. Thus, this rule says that when an enemy piece
overlaps a player piece, the player piece is destroyed.

Finally, the levels section defines the spaces the player
explores as part of the game, which is empty at the point of
ruleset design. Currently, ANGELINA designs games which
present a traditional sequence of levels to the player one after
another. Levels are defined here in the order they are played in,
and can either be loaded from another file or included as raw
data. In the example in Figure 1, the level shown is written as
raw data, with each number in the grid corresponding to an
index into the pieces list defined earlier in the game description
(this list being 1-indexed as opposed to the more traditional
0-indexing, since we use 0 to represent empty space).

IV. STATIC RULESET ANALYSIS

ANGELINA’s design process is broken down into distinct
tasks which compartmentalise a certain creative act, like



"gamename": "Before Venturing Forth",
"filename": "before_venturing",
"music": "ominous",
"color_accent": [0.4, 0.56, 0.31],
"pieces" : [

{

"name": "player",

"sprite": "fighter",

s
//...cut for length

i

"rules" : [

{

"trigger": "OVERLAP player enemy",
"events": ["DESTROY $2"]

}I

{

"trigger": "OVERLAP any wall",
"events": ["PUSHBACK $1"]

}I

{

"trigger": "OVERLAP enemy player",
"events": ["DESTROY $2"]

by

{

"trigger": "PLAYER_ARROW_KEY",
"events": ["RELMOVEALL player $1", "ENDTURN"]

s

{
"trigger":
"events":

}

//...cut for length

I

"ENDTURN",
["DO_AI_HUNT enemy player"]

"endconditions"™ : [

{

"outcome": "1",

"triggers": ["ALL_COVERING player goal"],

by
{

"outcome":
"triggers":
}
]I

"levels" : [
{lltypell: "]’_‘aw",
"width": H5",
llheightll : Il5ll,

"data":

"_l",
["COUNTPIECE player 0"],

4,0,3,

4
]
or length

Fig. 1. An abridged game description file from ANGELINA.

designing a level or testing difficulty. Game logic is currently
designed in the ruleset sketching task, which aims to produce
a set of rules which can support a game. It does not have
to guarantee the ruleset will produce an exciting or interesting
experience, as part of this is reliant on level design. Rather, the
objective here is to identify a ruleset with the most potential,
and without obvious shortcomings.

In this section we describe a process of static analysis that
we use to grade and filter randomly generated rulesets, using
abductive reasoning to work backwards from goal states to
find paths through the design space that are initiated by player
action. We show that this can identify valid solutions (and
routes to failure) for a game, and even provide additional
design information that can impact future phases of the game
design process.

A. Simple Inspection

Before ANGELINA performs abductive analysis, it first
applies a simple surface-level filtering to the ruleset being
considered, similar to approaches we have used in past ver-
sions of the software. This involves searching for a priori
logical consistencies, such as a ruleset that contains two
ending conditions with the same trigger, but opposite win/loss
outcomes. This example is inconsistent because, in the design
space we wish to consider, the player should not be able to win
and lose a game in the same time step. This simple filtering
has been used in many previous versions of ANGELINA as
well — in our evaluation we compare this approach in isolation
to full action chain generation.s

B. Action Chain Generation

The main analysis phase uses abduction to find paths
through the game’s design space. The result of this analysis is
a series of action chains. An action chain is a sequence, A, of
actions, a1, ...a,, which transform a starting game state into
a state which triggers an end condition. Note that these are
not sequences of concrete game actions, like a solution to a
puzzle or the kind of sequence of game moves that an MCTS
agent might produce. Instead, each step in the action chain
describes a fype of game event, a set of one or more possible
actions. For example, an event chain for an adventure game
might be:

o Press arrow keys to move player
o Move player over key to collect it
e Move player over door to unlock it

This chain of events doesn’t describe where the key or
door is in relation to the player, or how much movement is
required to get there, or whether other obstacles (like enemies)
will be encountered along the way. It doesn’t mention these
because these can only be known by looking at a ruleset
in the context of a particular level. In the absence of any
levels, what this action chain expresses is that there is some
logical sequence of actions that change the abstract state of
the game from a starting state into an end state. It expresses
a weak endorsement that this ruleset should yield solvable
level designs. Below, we describe the algorithmic process for
generating a set of action chains for a particular end condition.
When analysing a ruleset, ANGELINA will generate a set of
action chains for every end condition in the ruleset.



C. Outline of Algorithm

ANGELINA begins by creating a new empty action chain,
and adding a single action to it: the trigger of the end condition
it is solving for. It then adds this action chain to an empty list
of action chains called the open list — this contains every action
chain that is neither complete nor abandoned. The process
of generating action chains terminates when the open list is
empty: that is, every action chain derived from the original end
condition has either completed successfully, or been removed
and ended in failure.

ANGELINA picks the first chain in the open list, and
examines the last trigger in the chain. If this trigger is a player-
initiated action, then the chain is considered to be complete,
and it is added to a list of action chains called the complete
list, and ANGELINA proceeds to the next chain in the open
list. If this trigger is not player-initiated, then it becomes the
current goal — ANGELINA must now find all possible ways
to extend this chain by finding things that cause the goal to
trigger.

To do this, ANGELINA uses a lookup table that maps
triggers to enabling rules. For a given trigger, this table lists all
rules which could, in some circumstance or other, activate the
trigger. For example, the trigger COUNTEQUAL X Y activates
when the number of objects of type X is equal to the integer
value Y. It can be caused by the rules SPAWN X, which could
increase the number from a value less than Y towards Y, or
DESTROY X, which could decrease the active count from
some value greater than Y towards Y.

For each enabling rule, ANGELINA binds the variables in
the rule to the specific piece types defined in the goal trigger.
For example, if our goal trigger is COUNTEQUAL cake 2,
we search the lookup table for the unbound form of the
rule, COUNTEQUAL X Y. When we find the enabling rules
DESTROY X and SPAWN X, we rebind X back to cake
from the example rule, to derive the two bound rules:
DESTROY cake and SPAWN cake. We call these bound
rules subgoals.

For each subgoal, ANGELINA now searches the game
ruleset for any rule which contains the subgoal in its body.
Every matching rule represents one possible way the goal
trigger can be activated, and thus represents one possible
way to extend the action chain. Since there may be multiple
subgoals, and each subgoal may match multiple rules, we can’t
simply extend the current action chain we are working with.
Instead, when ANGELINA finds a rule containing a subgoal,
it duplicates the current action chain it is considering, adds
the matched rule’s trigger to the end of the action chain, and
adds this new chain to the open list. When this new chain
is later considered by the algorithm, this newly-added trigger
will become the new goal it attempts to expand.

ANGELINA creates duplicate action chains for each rule
it finds that triggers a subgoal. When it has done this for all
of the subgoals, or if no subgoals are found, it removes the
current action chain from the open list and discards it (since
it has now either been replaced with one or more duplicates

of itself that extend the chain, or found no possible extensions
and is thus not a usable action chain.

D. Interpreting Action Chains

ANGELINA creates action chains for every end condition
when analysing a ruleset. It can use both the contents and
quantity of discovered chains to analyse a ruleset and decide
whether it should be kept or discarded. The current version of
ANGELINA requires a game to have at least one action chain
which leads to a win condition, and one action chain which
leads to a loss condition, although this is not a requirement
of games in general (for example, a puzzle game like A Good
Snowman Is Hard To Build [12] does not have a loss condition
in a traditional sense).

We don’t require all end conditions to be reachable, as long
as the game can be both won and lost. This approach suits the
current version of ANGELINA, but it does have implications
for other approaches to automated game design, and future
versions of this system. For example, the automatic generation
of tutorials or help text is often based on an analysis of the
game’s ruleset. If game logic is expressed in the rules which
are not used in completing the game, or if there are objectives
which cannot be achieved, this might produce confusion in
automatically generated help text, unless such a system also
used action chains to analyse a ruleset in advance.

Another detail that may not be applicable to all systems is
the requirement that all actions chains start with player action.
In ANGELINA’s current game engine play is turn-based and
game logic is applied at regular intervals when a turn is ended.
We have built the system with the assumption that a turn only
ends when the player takes some kind of action. In a real-time
game the game’s logic is executed regardless of player input;
taking action in Pac-Man is not required for the ghosts to hunt
down and kill the player. Thus, for other game systems action
chains may not have to start with player input, and may have
secondary termination conditions (such as NPC behaviours).

V. LEVEL CONSTRAINT INFERENCE FROM ACTION
CHAINS

In the previous section we described how action chains
can provide insight into whether a ruleset supports valid play
leading to end conditions. One of the strengths of the use
of action chains is that they are agnostic to the content of
the game itself. They assume nothing about the content of the
levels, instead the technique looks for any possible permutation
of game events that might lead to a particular end condition.
However, while developing this system we realised that the
action chains themselves contain contextual information that
can be repurposed later in the design process, because they
point to specific ways in which the game can be completed.
This information not only helps us filter out rulesets — it can
also be used to constrain the level design space and thus make
that process more efficient as well.

By way of example: consider a (trivially simple) game with
one end condition: the player wins if there is exactly one
cake object in the game world. There are two rules: if the



player presses an arrow key, they move a person object in the
direction they press; and if a person object overlaps a cake,
they destroy it. By describing the rules in plain English, the
reader may have already deduced that the only valid levels
for this game are ones where there are two or more cakes
in the world at the beginning of the game — if there is one
cake the player automatically wins, and if there are no cakes
then the player cannot win, because no rule allows for us to
create cakes. This constraint on the game’s level design is
intuitive and obvious, and it would be helpful to find a way
for ANGELINA to infer this automatically.

To do this, we annotate action chains as they are generated,
with constraint information that applies to that action chain
only. To return to an earlier example, consider the goal trigger
COUNTEQUAL X Y. This trigger has two enabling rules:
SPAWN X and DESTROY X. In the action chain generation
phase we consider both as equally valid routes through the
game space, but in reality there are hidden requirements on
these routes being valid: SPAWN X can only bring about
COUNTEQUAL X Y if the number of X currently in the game
is less than Y, and mutatis mutandae for DESTROY X. We
attach these conditions to every enabling rule in the lookup
table. These relationships are written by hand, and while this is
not time consuming, it is a clear point of human involvement
in the system. We aim to investigate automating this in the
future.

Whenever ANGELINA extends an action chain using an
enabling rule, it also adds any attached conditions to the action
chain as well. Thus, every action chain also includes a list
of constraints which must apply to a level in order for the
action chain to be valid. These constraints do not affect the
ruleset generation phase (currently — we discuss this later, in
section VII) but they are used to constrain the generation
of levels. Prior to the use of level constraints, ANGELINA
would generate levels randomly, and then use an evolutionary
system with playouts to search the level design space. Now,
ANGELINA can reduce the size of the level design space
before and during evolution. In the cake example above,
ANGELINA can understand that there must be at least two
cakes in each level design, and can filter its initial population,
as well as the results of crossover or mutation, to ensure these
constraints are upheld.

VI. DESIGN SPACE ANALYSIS

In the previous sections we explained that action chains help
to filter and reduce the search space for both ruleset design and
level design. To assess the impact our approach has on on the
design spaces in question, we performed some experiments,
which we describe here. As a preface to the results we give, it
is worth noting that automated game design systems are highly
bespoke in nature: in terms of the types of game they aim to
generate; in terms of the engine they use to develop games in;
in terms of the algorithms they use to generate game content
and the representation they choose for each part of the game.
The results we provide here are unique to ANGELINA in that
sense, but we believe the scale of the results speaks to the

impact of our technique, and suggests it is widely applicable
to other automated game design systems.

A. Ruleset Design Space Reduction

Our first experiment aimed to assess what proportion of the
generative ruleset space is filtered out by using action chains.
We sampled 50,000 random rulesets generated by ANGELINA
with no filtering, and then evaluated each ruleset against the
simple filters described in section IV-A, and then again using
the action chains described in section IV-B. Using simple
filters removes 9.6% of the rulesets sampled, while using
action chains and selecting only games which support at least
one winning and one losing action chain removes 99.5% of
the ruleset samples, a tenfold increase.

This state space reduction speaks for itself, but we can
also consider it in terms of time cost also. Evaluating 50,000
rulesets with our static analysis approach took 17.3 seconds
on a 2017 MacBook Pro, which filtered out over 49,500
bad rulesets without evaluating them through level design or
playtesting. To contrast this, we sampled ten exploratory level
design processes from ANGELINA (exploratory level design
is currently its next phase after ruleset design, to evaluate
a ruleset by attempting to design levels for it). On average,
designing a single level for a ruleset took 4 minutes and 24
seconds. Being able to rapidly cull not just unplayable rulesets,
but rulesets without proper direction or goals, saves us huge
amounts of time by focusing the next phase of game design
on more promising rulesets.

Removing 99.5% of rulesets may sound drastic, and may
lead the reader to wonder whether the remaining rulesets are
quite similar or repetitive, but in fact the remaining 0.5% is
still a huge design space with a wide spectrum of good and
bad games in. A common approach to content generation for
games is to restrict the design language or source corpus in
such a way that most of the resulting possibility space is high-
quality, but derivative of the source material (for example,
an earlier version of ANGELINA remixed handwritten rules
in such a way that there were no unplayable combinations).
Here we take the opposite approach, by giving ANGELINA a
generic, high-level, parameterised design language with a vast
possibility space. The advantage here is that there are many
games in this space that have never been conceived of by
us, and some that have never been conceived of by any game
designer. But the tradeoff is a much lower ratio of good to bad
games. Removing 99.5% of these rulesets is simply the first
step towards tackling this problem, but the remaining 0.5%
still requires a lot of filtering and observation, and will only
continue to grow as we expand ANGELINA’s design language
in the future.

B. Level Design Space Reduction

In section V we described how action chains could also
identify constraints for the level design process. To understand
how impactful these constraints are, we assessed what propor-
tion of the level design space these constraints typically filter
out. Because every game has different constraints, we used



Average Fitness vs. Constraint Types

8 T I T T T

—=— Fully Constrained
Partially Constrained

61 |—e—  Unconstrained .

Fitness [length of solution]

Generation

Fig. 2. A graph showing the highest fitness of the population throughout
the evolutionary design of a level, sampled across 10 different level design
sessions for 10 different games.

ANGELINA to generate ten game rulesets, and then generated
50,000 levels for each game, with no constraints applied. On
average, the constraints filtered out 76% of the sampled levels
(ranging from 67.6% to 89.7%). By relaxing our constraints on
the level generation to only require they satisfy the constraints
for winning the game (for example, a tutorial level which has
no lose condition) this still filters out 71% of the sampled
levels on average (ranging from 55.3% to 89.7%). The range
of results is derived from from how varied each ruleset is —
some games may have rulesets with very specific requirements,
whereas other games may rely more on the arrangement of
pieces rather than their specific quantity.

ANGELINA uses an evolutionary system to design levels
for its games, and an MCTS player to playtest levels. The
evolutionary system uses Currently the system uses a simple
objective function based on the length of the shortest solution
path found by the MCTS player. This by no means relates to
level or game quality in general, but we have found it to be a
good initial guideline towards finding average-quality puzzle
levels. We leave the question of fitness function selection for
level design to a future paper. We apply level constraints both
during the generation of the initial random population, and
during the evolutionary process when levels are regenerated
or crossed over. To assess what impact this has on the fitness
and convergence of the evolutionary system, we ran some
additional experiments in which ANGELINA designed a level
for the same both with and without constraints.

For these experiments, we took ten game rulesets gener-
ated by ANGELINA, and generated levels for each under
three different conditions: fully constrained, where constraints
were applied to the initial population and during evolution;
partially constrained, where constraints were applied only at
the initial population generation; and unconstrained, where no

Highest Fitness vs. Constraint Types

I I I T T
—=— Fully Constrained
= Partially Constrained
= —e—  Unconstrained
=
E
s 15 .
<
.
L2 10} 1
g
=
R, 1
0 | | | | |
1 2 3 4 5 6 7

Generation

Fig. 3. A graph showing average population fitness throughout the evolution-
ary design of a level, sampled across 10 different level design sessions for 10
different games.

constraints were applied at all. We measured both the highest
fitness at each generation, and the average fitness of the whole
population, and averaged the results for each across the ten
different level design sessions. The evolutionary setup for the
experiment was the same as a normal exploratory level design
task in ANGELINA: a population of 12 levels, run for 5
generations, with a 5% mutation rate and elitism.

C. Results Analysis

First, we discuss Figure 2 which shows the average fitness
of the whole population at each generation. We can see
that both partial and full constraints initially outperform the
unconstrained evolution, which is to be expected since they
both start with better-filtered populations. However, in later
generations the fully constrained system vastly outperforms
both partial and unconstrained runs. We can clearly see that the
repeated use of level constraints ensures a minimum baseline
of quality in the crossover and mutation operators, which
contributes to growth in the average fitness over time. By
contrast, the partially constrained system tends towards the
same performance as the unconstrained system, since over
time it is allowing levels into its population that potentially
violate the basic playability constraints.

Figure 3 shows the highest fitness scores for the three
experimental setups at each generation. We can see that both
partial and full constraint usage outperforms unconstrained
level evolution initially, but the partial constraints then slump
as it is unable to improve itself as rapidly as the fully-
constrained system. We can see that later generations do see
an increase in fitness, but much later than the fully-constrained
system and with a lower end fitness. We can also see evidence
of the fitness plateauing for the fully constrained system
around a solution length of 17, which we discuss below. Both



graphs show that constraining the generation of levels in the
mutation, crossover and insertion of an evolutionary system
lead to higher-quality populations over time.

In the later generations of Figure 3 we see a plateau in
the fully constrained system. This is not a hard ceiling —
fitnesses as high as 26 have been recorded for a 4x4 grid
level design — but extremely high fitnesses tend to be less
reliable and more prone to collapse on repeated playouts. High
fitnesses can either be because the MCTS system has truly
found a stable, long solution; or because the MCTS playout
wasn’t able to properly solve the level and found a very long,
imperfect solution. In the latter case, given more iterations
or deeper rollouts the MCTS solver may find a drastically
shorter solution, and this can even happen on repeated MCTS
playouts with the same settings, since our playouts are not
seeded or retained across generations. This means that the
plateau represents a soft limit, beyond which it is hard to find
reliably longer puzzle solutions for a 4x4 grid.

Solution length works well as a metric for ANGELINA at
the current time, but its unpredictability at extremely high and
low values means that in the future we hope to replace it with
a more complex system that allows ANGELINA to create and
select its own fitness metrics for level and game design. For
now, however, solution length acts as a good guideline and
has led to the creation of several games which were well-
received by players — the version of ANGELINA described
in this paper recently designed games live at EGX Rezzed, a
major games expo in the UK, and had its games played by
thousands of expo attendees. We’re confident in using it as
a guideline for level design for now, and believe these fitness
graphs help demonstrate the effectiveness of design constraints
on producing higher-quality levels.

VII. DISCUSSION AND FUTURE WORK

The work described in this paper represents our first steps
towards rapidly culling design spaces using automated rea-
soning techniques. There are several aspects to this work that
bear discussion in its current state, and in addition we have
identified areas of future work we intend to explore.

A. Identifying Complex Contradictions

Earlier in the paper we described a simple example game
where the player controls a hungry character who eats cakes by
moving into them. The act of eating cakes might be expressed
as the following rule:

"trigger":
"events": [
"DESTROY $2",

"OVERLAP player cake",

In the example earlier in the paper, the game is won when
a single cake is remaining in the world. An action chain for
this game can be derived as follows:

o Press arrow keys to move player

« Move player over cakes to destroy them

o Win when one cake remains

In addition, this generates a constraint that there must
initially be two or more cakes in any given level. However,
now suppose we adjust the rule for cake destruction as follows:

"trigger":

"events": |
"DESTROY $2",
"SPAWN cake"

"OVERLAP player cake",

Now, when the player destroys a cake, another cake ran-
domly spawns elsewhere in the game. We can easily intuit
here that this game is no longer winnable: the only action in
the game that reduces the number of cakes also increases it,
meaning it can never be reduced or increased towards another
target value. However, our current method of action chain
generation doesn’t take this into account. There are many
other examples of subtle contradictions that are hard to detect:
for example, a loss condition which is satisfied before a win
condition (consider the cake-eating game, except we lose if
there are exactly two cakes remaining).

We have plans to solve this problem by extending the level
design constraints system that is already in place. This will
allow us to express more complex constraints that can be
carried up the action chain that allow us to capture notions like
the fact that this action chain should result in a net decrease of
the quantity of a certain object type. We are also considering
exploring more formal approaches to analysing these rulesets
(see Automated Reasoning, below).

B. Intuiting Design Knowledge

Throughout the development of ANGELINA we have con-
sulted with game designers as well as taken part in the practice
of game design ourselves. One of the interesting phenomena
associated with game design is the sense of intuition developed
by game designers that allows them to view the rules of a
game, in the absence of playable content such as a level or
puzzle, and infer properties the game has or simple affordances
the game’s ruleset offers. Designers use this when prototyping
games, when considering extensions to games or trying to
rebalance or fix design problems, and also use it to evaluate
games designed by others.

The inferred level constraints constructed from event chains
represent a very basic form of intuition about a game. They
don’t represent precise knowledge gained from playtesting, nor
do they represent a priori knowledge about game design in
general: they represent a way for an automated game designer
to rapidly gain simple guiding principles about a particular
game. In this paper we’ve already shown that these have
value as a way of reducing the complexity of search tasks in
automated game design, but from a Computational Creativity
perspective this may be an impactful way for the system to
demonstrate understanding and insight in game design.

We are interested in pursuing these ideas further, and seeing
what other kinds of intuition-like knowledge can be gleaned
from analysing rulesets prior to engaging in level design.
Designers can often hypothesise about the impact of a change



on a ruleset, or sketch out what affordances a particular
rule might have. While this arguably involves some kind of
rapid mental simulation, as well as an accumulated history
of thousands of hours of playing and experiencing different
kinds of game, it is nevertheless a fascinating skill that would
be hugely beneficial to automated game designers. Not least
because it speeds up the prototyping phase of game design,
and reduces the need to exhaustively playtest ideas, but also
because it provides new opportunities to frame and describe
the design process to others, which is a crucial idea that
underpins a lot of work in Computational Creativity [13].
Conveying intuition and hypotheses to people as a motivation
for work could have a huge impact on the perception of
automated game designers — not just by audiences of players,
but also by people within the games industry who might be
working with such software one day as co-creators [14].

C. Automated Reasoning

Our analysis process currently relies on structures such as
lookup tables to bridge the semantic gap between language’s
keywords (like DESTROY) and their underlying meanings
(reducing the quantity of something). ANGELINA’s domain
specific design language was created with readability in mind,
ease of authoring, and ease of automatic modification — we
didn’t anticipate the need to have the language formally
analysed, and so this process is not always straightforward
and reasoning about more complex properties of a game gets
increasingly difficult.

In the future we are considering building a model of
ANGELINA’s game engine that would allow ANGELINA to
formally specify its games and then reason about their prop-
erties. Thus instead of looking up the fact that DESTROY X
reduces the number of X objects in the world, it could reason
about the actual impact that keyword has on a concrete model
of a game, and use such a model to resolve complex conflicts
within a ruleset or identify deeper constraints implied by the
game. Work by Martens [15] and Smith [16] show different
approaches to applying logical representation to game systems,
which we plan to take as inspiration.

VIII. CONCLUSIONS

In this paper we describe how applying abductive logic to
game rulesets can greatly reduce the size of a game design
space, by filtering out rulesets that have design deficiencies,
as well as providing insights into the game ruleset that can
constrain the space of possible level designs. We showed that
by applying action chain filtering to ANGELINA, our auto-
mated game design system, we were able to cull over 99.5%
of the total ruleset possibility space, and 75% of the average
total level design possibility space. This enables ANGELINA
to work with much less game design knowledge supplied a
priori in terms of game templates, and instead work through
a large possibility space to identify interesting valid games,
and design levels that demonstrate a better understanding of
the ruleset in question.

Automated game design is a major challenge for game
Al research, identified as one of the frontier problems in
the field by a recent panorama paper [17]. The field has
many challenges, but chief among these is the multiplicatively
vast design space that results in combining generative tasks
like level design or ruleset design. Developing new ways
to cut down the size of these possibility spaces, in order
to analyse more deeply the promising subsections of these
spaces, will help the field advance further and hopefully impact
neighbouring research efforts in general game playing and
generative systems.

IX. ACKNOWLEDGEMENTS

This work is funded by EC FP7 grant 621403 (ERA Chair:
Games Research Opportunities). Thanks to MPI-SWS for
supporting the work of the first author.

REFERENCES

[1] M. Cook and G. Smith, “Formalizing non-formalism: Breaking the rules
of automated game design,” in Proceedings of the Foundations of Digital
Games Conference, 2015.

[2] R. Hunicke, M. Leblanc, and R. Zubek, “Mda: A formal approach to
game design and game research,” in In Proceedings of the Challenges
in Games Al Workshop, Nineteenth National Conference of Artificial
Intelligence, 2004.

[3] M. J. Nelson and M. Mateas, “Towards automated game design,” in
AI*IA 2007: Artificial Intelligence and Human-Oriented Computing,
2007.

[4] M. Treanor, B. Schweizer, I. Bogost, and M. Mateas, “The micro-
rhetorics of game-o-matic.” in Proceedings of the Foundations of Digital
Games Conference. ACM, 2012.

[5] G. A. B. Barros, A. Liapis, and J. Togelius, “Murder mystery generation
from open data,” in Proceedings of the International Conference on
Computational Creativity, 2016.

[6] C. Fernandez-Vara and A. Thomson, “Procedural generation of narrative

puzzles in adventure games: The puzzle-dice system,” in Proceedings of

the The Third Workshop on Procedural Content Generation in Games,

2012.

J. Togelius and J. Schmidhuber, “An experiment in automatic game

design,” in Proceedings of the IEEE Conference on Computational

Intelligence in Games, 2008.

[8] A. Khalifa, D. P. Liebana, S. M. Lucas, and J. Togelius, “General video
game level generation,” in GECCO. ACM, 2016, pp. 253-259.

[9] M. Cook, “A vision for continuous automated game design,” in Pro-

ceedings of the Experimental Al and Games Workshop at AIIDE, 2017.

T. Schaul, “A video game description language for model-based or

interactive learning,” in Proceedings of the IEEE Conference on Com-

putational Intelligence in Games, 2013.

S. Lavelle, “PuzzleScript,” http://www.puzzlescript.net/, 2014.

A. Hazelden and B. Davis, “A good snowman is hard to build,”

http://www.agoodsnowman.com/, 2015.

[13] J. Charnley, A. Pease, and S. Colton, “On the notion of framing in

computational creativity,” 2014.

M. O. Riedl and A. Zook, “Al for game production,” in Proceedings of

the IEEE Conference on Computational Intelligence in Games, 2013.

C. Martens, “Ceptre: A language for modeling generative interactive

systems,” in AIIDE. AAAI Press, 2015, pp. 51-57.

A. M. Smith and M. Mateas, “Answer set programming for procedural

content generation: A design space approach,” IEEE Trans. Comput.

Intellig. and Al in Games, vol. 3, no. 3, pp. 187-200, 2011. [Online].

Available: https://doi.org/10.1109/TCIAIG.2011.2158545

G. N. Yannakakis and J. Togelius, “A panorama of artificial and

computational intelligence in games,” IEEE Trans. Comput. Intellig. and

Al in Games, vol. 7, no. 4, pp. 317-335, 2015.

[7

—

(10]

(11]
[12]

[14]

[15]

[16]

(17]



