
Multi-Faceted Evolution Of Simple Arcade Games

Michael Cook and Simon Colton,
Computational Creativity Group, Department of Computing,

Imperial College, London, UK
ccg.doc.ic.ac.uk

Abstract— We present a system for generating complete game
designs by evolving rulesets, character layouts and terrain maps
in an orchestrated way. In contrast to existing approaches to
generate such game components in isolation, our ANGELINA
system develops game components in unison with an appreci-
ation for their interrelatedness. We describe this multi-faceted
evolutionary approach, and give some results from a first round
of experimentation.

I. INTRODUCTION

Computational intelligence research has done much to help
the games industry attack the content generation problem
in recent years. As consumers expect a greater breadth and
depth of content in videogames, procedural generation tech-
niques have been used to alleviate the burden on developers
and give way to more dynamic and interesting games. This
research has contributed work towards the generation of
level designs [1], [2], [3], [4], [5], visual content [6], [7],
controllers for game entities [8] and game rulesets [9], [10],
[11]. Much of the material written about this work mentions
a move towards automated game design, where an intelligent
system is responsible for the overall development of a game.
However, we argue that in its current state, such research is
little more than an assistant in the game design process, not
a designer itself.

For a system to take on the role of a game designer, it
is not sufficient for it merely to generate all of a game’s
components by itself. It must also understand the relation-
ship those components have with one another, and how
a change in one component affects the final game as a
whole. We have developed a system, called ANGELINA1,
that designs games from scratch by evolving the constituent
game components with respect to one another. ANGELINA
is composed of separate evolutionary processes which design
a game’s ruleset, its level and the layout of the game’s non-
player characters (NPCs), combined with an understanding
of the dependencies between these processes that allow it
to influence the end result accordingly. The types of games
that ANGELINA can currently generate are limited to simple
arcade games, as portrayed in figure 1, but we intend to
extend this to more sophisticated games in the future.

The remainder of this paper is organised as follows: in
section II, we introduce ANGELINA and outline the process
by which it evolves games. In section III, we present some
sample games generated by ANGELINA and evaluate the
quality of the output, showing that ANGELINA is capable of

1A Novel Game-Evolving Labrat I’ve Named ANGELINA

Fig. 1: A screenshot from a game designed by ANGELINA.
The player is a light gray colour, and the non-player char-
acters are coloured in red, blue and green. The score is
displayed in the top right-hand corner.

working alone or assisted by a human, and demonstrating the
importance of the system’s awareness of the finished game.
In section IV, we look at existing research in automated
game design, and discuss how ANGELINA fits into this
context. Finally, in section V, we discuss the future for AN-
GELINA and the possibilities for automated design beyond
this project.

II. THE ANGELINA SYSTEM

A. The Anatomy of a Game

We represent a game as three flexible components - a
map which defines passable and impassable areas in a two-
dimensional grid of square tiles, where a tile is a small
square of space in the game world; a layout which describes
the arrangement of player- and non-player-characters on a
similar two-dimensional grid; and a ruleset which describes
the effects of collisions between types of game entities, as
well as movement types for the NPCs, time limit and score
limit for the game.

An example of a map and layout can be seen in the
example game in Fig 2. The state space for these two
components is the space of possible configurations of the 2D
arrays representing them. For a map, black squares denote
impassable terrain. NPCs can be freely placed anywhere

<scorelimit>44</scorelimit>
<timelimit>72</timelimit>
<redmovement>CLOCKWISE</redmovement>
<greenmovement>RANDLONG</greenmovement>
<bluemovement>RANDLONG</bluemovement>
<rules>
<rule>PLAYER,RED,DEATH,DEATH,1</rule>
<rule>GREEN,RED,TELEPORT,DEATH,0</rule>
<rule>OBSTACLE,RED,NOTHING,TELEPORT,0</rule>

</rules>

(a) The map (b) The game layout

Fig. 2: A sample game produced by ANGELINA, with the
map and layout shown visually in the subfigures, and the
rules presented in XML format.

within the layout, but not on top of each other. The state
space described by the rulesets is derived from those de-
fined in [10]. In particular, circles of three different colours
move around the grid defined by the map. The manner
in which they move is chosen from a selection of presets
based on existing arcade games, including: random walks
which change direction at unpredictable intervals, and wall
hugging behaviours, which only change direction when they
encounter an obstacle.

When two objects collide, rules in the ruleset may fire.
Rules have conditions, which are the two colours whose col-
lisions they are triggered by (possibly including the player),
and the effects applied to the two colliding objects. These
effects are death, i.e., removing the object from play, and
teleport, which moves the object to a randomly-chosen, non-
obstructed point on the map. A rule may only apply an
effect to one of the colliding objects. Each rule also has
an associated score value which may be positive, negative or
zero. The player’s score is shown while they play the game.

These three game components can be evolved individually
as if they were single artifacts, or with reference to each
other, as described later. The combined game components are
then converted into external formats for automatic compila-
tion into executable games. ANGELINA is currently capable
of outputting Monkey code2, which can be compiled into a
variety of target executables, including Flash, HTML5 and

2http://www.monkeycoder.co.nz/

Objective-C code. The flexibility of these output formats will
make it simple to distribute ANGELINA’s games widely,
which will help when we incorporate human-sourced playout
data in future experiments.

B. Crossover and Mutation

In order to recombine the various elements of the games
we implement a range of crossover styles, obtained through
experimentation with each component type. For maps, we
produce offspring by taking a binary approach to the two
parents. For each pair of parent maps, we produce five
children. One child is produced through binary AND, where
a tile in the child map is an obstacle if it is an obstacle in
both of its parents. We do the same for another child, through
binary OR. The remaining children are produced through a
scattered inheritance, where an arbitrary map tile in the child
map mapchild is defined as:

mapchild[i][j] =

{
map1[i][j] if rnd() < 0.5
map2[i][j] if rnd() ≥ 0.5

For NPC layouts, we use some similar approaches, em-
ploying binary operators AND and OR to produce children.
We also transpose sets of coloured NPCs between the par-
ents; for example, one child may be a copy of one of its
parents, but have its set of blue NPCs switched out and
replaced with the set of blue NPCs from its other parent.
Which sets are crossed over is chosen randomly, and each
pair of parent layouts generates ten children.

Ruleset evolution includes some single-parent mutation as
well as dual-parent recombination. Single parents generate
mutated offspring by choosing a random rule and randomly
changing one of its parameters, such as the effect of the
collision, or the coloured NPCs it is triggered by. Crossover
works by swapping rules over between parents, so that the
resulting child has a mixture of rules from its parents. For
every eight children generated this way, we also include two
randomly generated ‘fresh’ rulesets to avoid stagnation in the
evolutionary search, which was noted in early experiments.

These evolutionary settings have been determined by some
preliminary experimentation, but in future, we plan to per-
form systematic testing of the evolutionary parameters, to
optimise the system

C. Fitness Functions For Game Components

1) Maps: Map designs are scored using two metrics which
we have termed fragmentation and domination. A map’s
fragmentation score is equal to the number of islands present
in the map, where an island is a set of blocks that are adjacent
to one another and disconnected from both the wall and other
islands. A map’s domination score represents the number of
tiles which dominate sections of the map. A tile is said to
dominate two other tiles if all paths between those two tiles
must pass through the dominated tile. A similar definition
can be found in [5]. In the vocabulary of game design, a
dominating tile represents a doorway or a corridor; a tile
separating two regions of the map.

Calculating which tiles dominate others is costly to do,
given that it must be performed on every tile in every map
in the population at every generation. We check if a tile
is dominating by calculating how many tiles are reachable
from that tile in the map. We call this set of reachable tiles
a flood plain. For a tile, t, the flood plain is defined as:

fldplain(t,map) = |{t2 such that rchable(t, t2,map)}|

where

rchable(p, q,m) ⇐⇒ ∃a path from p to q in map m

We then modify the map by blocking out t and making
it inaccessible. We then perform the same calculation for a
neighbour of t, tnb, in the modified map mapbr.

mapbr = map[t = obstacle]

Where map[t = obstacle] represents a remapping of
map such that tile t is now inaccessible. Therefore, tile t is
a dominant tile for map if the modified floodplain is more
than one tile smaller than the unmodified floodplain.

floodplain(t,map) < floodplain(tnb,mapbr) + 1

Since we have only blocked off one tile in mapbr, if the
floodplain is more than one tile smaller then blocking t must
also have blocked access to other tiles. In other words, t
dominates at least one tile. In general, fragmentation controls
the number of obstacles in a map, while domination controls
the openness of the play areas. These map-generation metrics
are simple, but include a range of arcade-style archetype
maps varying from open arena-based games, such as Pong
or variants of Snake with minimal obstacles, to the more
labyrinthine maps with maze-like properties such as those
used by Pac-Man or Sokoban.

2) Rulesets: We score rulesets using two distinct methods.
First, we run a series of checks to filter out the most
unplayable or useless rulesets. We do this by examining the
rulesets directly and checking for pathological combinations
of rules. For instance, a ruleset is unplayable if the only way
of gaining score is for the player to die; similarly, a game
should never specify a rule for a NPC type if that type is
entirely absent in the game layout, and the player cannot
collide with themselves, etc.

In deciding on what form these checks should take,
we took inspiration from McGonigal’s definition [12] of
a game’s components as a goal, a set of obstacles and a
feedback mechanism. In particular, we ensure the games are
directed towards a goal using score gain and provide an
obstacle to the player through the loss of score or death.
These games shrink the state space for rulesets, whilst
retaining a core space of ‘interesting’ rulesets that can be
explored through playouts. We also cull the lowest-scoring
half of the population and take the remainder through to
a series of playouts. In total we simulate eight playouts of

the game, recording the score and whether or not the player
died. A playout begins by fixing a behaviour for the player-
character (since the playout is automated, and therefore no
human player is present) by applying one of the available
NPC behaviours to them, and optionally adding in certain
constraints to test different aspects of the game. The types
of playout are:

• Empty, where the player character is removed from the
game and the game is executed until the time limit.
This gives useful information on the game’s natural
entropy. For a game like Pong, this would result in a
large negative score, while a game like Pacman would
return a zero score.

• Static, where the player is included in the game but
does not move. This might be considered a step up from
the Empty playout. This playout represents a worst-case
scenario for player behaviour.

• Random Walker, where the player mimics the NPC be-
haviour type of random walk. The player moves through
the environment, turning at randomised intervals.

• Pre-Collision, which are identical to Random Walk
playouts, except that the player is collided with all NPCs
of one or more types before the play begins. These
playouts are useful to compare to Random Walks as they
show what the extremes of player involvement are. A
game like Pacman yields very useful information from
these playouts, as they include a perfect run (colliding
with all the pills before the game begins completes the
level) and a worst-case (colliding with the ghosts before
the game begins, which results in the game over screen).

• Long Play, which are also identical to Random Walk
playouts, but they are not limited by time.

This sort of information about the role of the player in
the current ruleset is used to filter out broken rulesets by
detecting games which the player has little or no effect on,
or that are too easily won. This is done in a second round of
evaluation, where each ruleset is examined in turn and the
score data for their playouts analysed. We expect some or
no progression between the Empty, Static and Random Walk
playouts, as they represent increasing player involvement
and our definition of a game is strongly geared towards the
player being the factor affecting the score. It is also useful
to compare pre-collision data, as if all playouts of this type
tend towards a positive or negative score it can mean that a
game’s rulesets are either too difficult or too hard.

Note that score and time limits are not measured directly.
Because they affect the length of playouts, they indirectly
affect the fitness of the games overall - a time limit that is
too short may prevent the player from making progress, while
one that is too long may give the player too much time to gain
score. Score and time limits are modified during crossover
and mutation as part of the evolutionary process.

3) Layouts: Layouts are scored using sparseness and
volume as metrics. This space is defined thus: a layout is
sparse if the average distance between two NPCs is high.
For a layout with n items in it (of any colour) the sparseness

of a layout is measured as:

2× (
∑n

i=1

∑n
j=1 dist(i, j))×

1
(n×n−1)

Assuming the existence of a dist function, measuring
the Euclidean distance between two items. Volume is the
measure of how many entities NPCs there are on-screen.
For a map m, its volume is defined as:

vol(m) = |reds(m)|+ |blues(m)|+ |greens(m)|

Where colour(m) is the list of items in map m of that
colour. The layouts also compare themselves with current
map instantiations to ensure that they are producing legal,
playable layouts - that is, layouts which do not place NPCs
over obstacles such as walls. In this way, the layouts and the
maps shape each others’ development.

D. Multi-Faceted Evolution

For creative domains such as videogame design, we have
developed a new framework for artefact generation that uses
individual evolutionary strands in a compositional manner,
to share information during the evolutionary process and use
the fitness of individual components to increase the overall
fitness of the finished artefact.

The basic components of ANGELINA are the evolutionary
strands that define what the system has control over. These
are currently the design of rulesets, maps and character
layouts, but in future we will extrapolate this to components
that design graphics packs, control systems, quests or other
elements of design. These strands are considered to be
individual, but they are placed within a larger system that
allows them to interact and influence other strands.

The system is represented by a central game object. The
game is composed of three elements; a ruleset, a map and
a character layout. These elements are initially represented
by appropriately-chosen null phenotypes, i.e., templates that
represent an empty instantiation of that object. For a ruleset,
it is an empty set of rules and a static movement rule for
all NPCs. For a map, it is a square arena with no obstacles
inside it. For a layout, it is simply the empty layout.

Each evolutionary strand is self-contained; that is, it has
its own fitness functions and understands how to create new
generations of whatever it is trying to evolve. During evolu-
tion, however, fitness functions may request information from
the central game object. We call this a pull, as the strand is
retrieving information from the main object. The information
that the fitness functions request may be very simple, such as
the number of red NPCs in a given layout, or it may require
retrieving a larger component such as the game’s map, to
check for legality of object placements. Initially, the strands
will pull the null phenotypes from the game object. They
exist to ensure there is always some information to measure
fitness against, even if the information retrieved is merely a
placeholder.

At regular intervals, ANGELINA requests that evolution-
ary strands perform a push to update the state of the central

game artefact. Each strand copies its most fit phenotype into
the game object so that information being pulled is more
accurate for measuring fitness against. This is currently done
after every generation, in order to keep interaction between
the strands high and the information in the main object as up-
to-date as possible. However, the system is flexible, and the
strands could update less frequently to give more autonomy
to each individual component’s evolution.

The design of this system has some advantages. From
a practical standpoint, it is trivial to add further compo-
nents to the system without affecting the current evolution.
Strands push and pull information from a central object,
so adding a component that generates music or graphics
will not affect existing systems, but can take advantage of
their pushed information to take part in the multi-faceted
process. Moreover, while the process described above has the
strands operating in parallel, this is not compulsory. If one
component is already designed and finished, it can be fixed
in the central game component and never updated, providing
accurate fitness data to other strands from the first generation.
In this way, we can provide partial designs to ANGELINA
and ask it to complete them for us. For instance, ANGELINA
can be asked to design levels for a human-designed ruleset,
by specifying the ruleset from the beginning and asking it to
provide levels and layouts that exhibit high fitness alongside
that design.

<scorelimit>44</scorelimit>
<timelimit>72</timelimit>
<redmovement>CLOCKWISE</redmovement>
<greenmovement>RANDLONG</greenmovement>
<bluemovement>RANDLONG</bluemovement>
<rules>
<rule>PLAYER,RED,DEATH,DEATH,1</rule>
<rule>GREEN,BLUE,TELEPORT,DEATH,0</rule>
<rule>OBSTACLE,RED,NOTHING,TELEPORT,0</rule>

</rules>

(a) The game map (b) The game layout

Fig. 3: A game designed by ANGELINA running indepen-
dently, where evolutionary processes are not able to inspect
other components whilst evolving. The components, whilst
individually fit, do not relate to each other and the resulting
game is unplayable.

III. EXPERIMENTATION AND RESULTS

We conducted several experiments to test the limits of
ANGELINA’s ability to design games both assisted and
alone, and in this section we introduce each of these and
examine the results arising.

A. Density Of The Game Design Space

Before we present designs produced by ANGELINA, we
will give an idea of the nature of the state space that our
system is exploring. We produced an initial population of
100 games, and examined each for their quality. If a game
was playable, with a consistent map and layout and a goal-
oriented ruleset, we classified them as Playable. If the games
were not playable, they were classified with further detail on
what factors were causing the lack of playability. The results
of the classification exercise are given in Figure 4.

Playable 3
Illegal Map/Layout 100

Broken Rules 74
No Goal 69

No Obstacles 54

Fig. 4: Classification of 100 randomly-chosen games from
the state space.

Of the 100 games, only three were playable. We define
playable through the same judgements we apply in our fit-
ness functions, along with further evaluation through human
playouts. Each game was compiled and played by hand, and
games which had clear goals and obstacles, and in which the
player had some purpose or way to affect the system, were
deemed playable. All of the games, however, had conflicting
layouts and maps. Every game generated had NPC elements
that were either embedded into walls or cut off from the rest
of the map. We allowed a game to be declared playable if
the player character was legally placed, although other game
items may be placed illegally. As long as the goal remained
achievable - that is, one or more of the goal items are not
placed illegally - then the game as a whole is technically
playable.

74 of the games examined had broken rules. These in-
cluded rules that can never fire, such as a rule for a collision
between two wall entities, or a rule that makes no sense given
the current game design, such as a rule for green NPCs if the
layout does not contain any. Further to this, 69 of the games
had no way for the player to gain score, or avoid losing
score, and 54 of them had no challenge for the player, either
through death or the loss of score. Often, failing one of these
checks was enough to stop a game being playable. However,
most games failed three or more checks.

B. Independent Game Design

To investigate whether the whole is more than a sum of its
parts, we first present games developed by ANGELINA with
the system running without interaction or awareness between

the individual evolutionary strands. What results are games
that are composed of uniquely fit subcomponents, but that
are not considered fit as overall games. Figure 3 shows a
sample game from these runs. The game’s rules, roughly,
challenge the player to reach a red object. Touching the red
object kills the player, and is the only way to gain score.

We see that each component complies with its own fitness
constraints. For instance, the map in figure 3 exhibits a high
domination score, creating a maze-like layout. The rulesets
also conform to the loose common-sense fitness function
devised for them. Despite this, the game in Figure 3 is
unplayable, because, the map and layout conflict with each
other by overlaying NPCs with wall tiles. This means those
characters are unable to move or may be inaccessible to the
player. The ruleset also includes two problems in particular
- one of the rules, for collisions between green and blue,
will never be used because the layout does not include any
green NPCs. Another rule, the only one which allows the
player to gain score, causes the player to die. This means
that there is no way for the player to achieve the game’s
goal. Recalling our definition of a game as a goal, a series
of obstacles, and a feedback mechanism, a broken ruleset
such as this provides incorrect obstacles, and does not have
any path to the goal for the player to pursue.

C. Flexibility And Responsiveness

Figure 5 shows a game designed with some human input.
We presented ANGELINA with a human-designed map and
layout and asked it to derive a ruleset. The top images show
a fairly open map with islands of obstacles that impede
movement. The game ANGELINA designed exhibits rules
relating to the placement of Blue non-player characters, fixes
goals and obstacles for the player, and chooses movement
behaviours for the various non-player character types. The
player must avoid the moving blue NPCs and touch the walls
to score.

We then changed the map and layout to that shown the
lower images in Figure 5. This map and layout is less open
than the previous one with a similar NPC arrangement. The
fittest ruleset derived is much different to the previous exam-
ple; the player must stay around blue objects to gain score,
and avoid the fast-moving and unpredictable red objects.
These objectives are more about awareness and navigation
than agility, which fits with a more confined space and
unpredictable opponents, since the red NPCs now teleport
erratically. The module responsible for ruleset design knows,
through playouts and analysis of NPC populations, that the
space of ‘good’ games has changed because of the new level
design, and the rulesets produced change appropriately. In
particular, the second game designed does not use collisions
with obstacles as a rule, because the higher number of
obstacles would make the game too difficult (or too easy,
depending on the effect of colliding with the obstacles). In-
stead, the proposed game takes advantage of the more maze-
like approach by developing a game with an emphasis on
chase and evasion. ANGELINA’s responsiveness to change
in one element here has resulted in a dramatically different

<scorelimit>55</scorelimit>
<timelimit>91</timelimit>
<redmovement>CLOCKWISE</redmovement>
<greenmovement>RANDSHORT</greenmovement>
<bluemovement>RANDLONG</bluemovement>
<rules>
<rule>PLAYER,OBSTACLE,TELEPORT,NOTHING,1</rule>
<rule>BLUE,PLAYER,TELEPORT,TELEPORT,-1</rule>

</rules>

(a) The game map (b) The game layout

<scorelimit>89</scorelimit>
<timelimit>21</timelimit>
<redmovement>RANDLONG</redmovement>
<greenmovement>CLOCKWISE</greenmovement>
<bluemovement>CLOCKWISE</bluemovement>
<rules>
<rule>PLAYER,BLUE,NOTHING,NOTHING,1</rule>
<rule>PLAYER,RED,DEATH,DEATH,0</rule>
<rule>PLAYER,NONE,DEATH,TELEPORT,-1</rule>
<rule>OBSTACLE,RED,NOTHING,TELEPORT,-1</rule>

</rules>

(c) The game map (d) The game layout

Fig. 5: Two games designed by ANGELINA, showing a
response to the change in level design.

result that shows what we might describe as the beginnings
of understanding being exhibited by the software.

D. Free Design

Figure 6 shows two games designed by ANGELINA
without constraints. The first game is a close relative of
Pacman - the player is encouraged to collide with blue
objects (which are destroyed, and give the player score)

and avoid red objects (contact with them causes death).
The map designed is not as symmetrical as Pacman’s, but
is open enough for the player to manoeuvre around. This
is a common arcade archetype that ANGELINA discovered
within the state space independently.

The second game, shown in figure 6, is an arcade game
equivalent of the ‘steady hand game’, where the player must
avoid touching walls and pick up all NPCs of a certain
colour. This map is designed as more confined, with less
free space to manoeuvre. Its layout is more spread out and
contains only one type of NPC. These two games show
how ANGELINA explores and refines the search space open
to it, and creates games that make sense as a whole, with
the various subcomponents complementing each other. The
Steady Hand Game is an interesting contrast to the Pacman
clone, as it is not a rediscovery of a famous arcade game,
yet is recognisable as a coherent game.

IV. RELATED WORK

A. Automated Game Design

There is relatively little research which considers the
problem of automated game generation as being any more
than a series of linear content generation problems. Togelius
et al. [10] explored the possibility of ruleset generation,
using neural networks to evaluate their rulesets according
to a learning-based model of fun similar to that described
in A Theory Of Fun [13]. The rulesets generated by this
system define two-dimensional arcade games where coloured
shapes are controlled around a map. Although the work made
some useful conclusions about its choice of model for game
quality, the scope of the project was limited to ruleset design
and did not attempt to generate other game components, such
as levels or control schemes. However, Togelius’ use of an
independent playout module to assess rulesets can be seen as
a move towards a more aware game designer, as it allowed
the system to reflect on its own work as it progressed.

Smith and Mateas discuss automated game design in their
presentation of Variations Forever [9], a research project
into the procedural generation of ‘minigames’. The authors
use answer set programming ([14], [15]), a powerful form
of logic programming, to represent a large state space of
possible rulesets, and then constrain the space to explore
interesting subspaces of rules. This work only generated sets
of rules, but the work is particularly notable because of the
discussion of automated game design found within. In partic-
ular, the authors propose further work to develop their system
with an automated playtester that could evaluate rulesets
and use a knowledge base of player behaviour to suggest
alterations to game designs. However, the discussion does
not extend beyond the realm of designing simple rulesets,
in a ‘generate and test’ paradigm. In contrast, we aim to
produce a system capable of understanding the connectedness
of multiple game components, which means moving beyond
rulesets alone.

Browne and Maire [16] explore the problem of automatic
game design for the world of boardgames, a medium with

<scorelimit>56</scorelimit>
<timelimit>28</timelimit>
<redmovement>CLOCKWISE</redmovement>
<greenmovement>STATIC</greenmovement>
<bluemovement>RANDLONG</bluemovement>
<rules>
<rule>PLAYER,RED,DEATH,DEATH,-1</rule>
<rule>PLAYER,BLUE,NOTHING,DEATH,1</rule>

</rules>

(a) The game map (b) The game layout

<scorelimit>24</scorelimit>
<timelimit>96</timelimit>
<redmovement>STATIC</redmovement>
<greenmovement>RANDLONG</greenmovement>
<bluemovement>RANDSHORT</bluemovement>
<rules>
<rule>OBSTACLE,PLAYER,NOTHING,DEATH,0</rule>
<rule>PLAYER,RED,NOTHING,TELEPORT,1</rule>
<rule>RED,OBSTACLE,TELEPORT,NOTHING,0</rule>

</rules>

(c) The game map (d) The game layout

Fig. 6: Top: A Pacman-style game where the player must
pick up green objects while avoiding red NPCs. Bottom: A
’steady-hand’ game designed in an unconstrained mode. This
game was not in the archetypal arcade game design space,
but is an interesting invention by the system.

many analogues to arcade videogames. The work here closely
tackles the problem of automated game design by developing
not only rulesets, but board shapes and starting layouts
also. The work led to the design of many boardgames,
some of which achieved commercial success3. Although
similar in structure, videogames have many components that
boardgames lack. Most notably, the majority of videogames
are played in real-time, which makes the task of playing
out, and therefore evaluating, candidate games much more
difficult due to a larger state space of game executions.
Similarly, videogames typically derive their challenge from
the presence of computer-controlled non-player characters.
Assessing the challenge represented by these characters is
harder than considering the challenge represented by binary
rules, which in turn makes games harder to evaluate.

B. Evolutionary Computation

Evolutionary computation has been used in many areas
of content design for videogames both in research and so-
called ‘real-world’ videogame projects4. Often, these projects
employ a straightforward, linear Darwinian evolution method
where a population of candidate artifacts are evaluated
against a single fitness function and then high-scoring ar-
tifacts are crossed over to generate a new, fitter population.

Two relevant techniques which have emerged out of re-
search into evolutionary computation are multi-objective evo-
lution (MOE) and co-evolution. MOE differs from standard,
linear evolution by attempting to optimise more than one
fitness function for a single evolutionary strand. These fitness
functions typically conflict in some way, and forms of Pareto
optimality are often employed to find maximally-satisfying
artifacts through evolutionary search. An example of such a
system, along with a succinct explanation of its operation,
can be found in [17].

Co-evolution refers to a naturally-occuring evolutionary
system where two organisms evolve in response to changes
in each other. This is often found in relationships between
insects and plants or larger animals, comparable to symbiotic
relationships. Programmatically, co-evolution has been used
to develop two or more artifacts together with one another
[18], [19]. Two standard evolutionary strands work alone,
and in order to assess their fitness, they are composed into
a single artifact and evaluated.

Standard evolution and other genetic programming tech-
niques are well-applied to the world of content generation
([3], [8]). However, these techniques work largely in isolation
and have no way of interacting with larger systems, and there
is no sense of a guided design process.

Co-evolution is the technique closest to ANGELINA’s
underlying methods, but while co-evolution is primarily
concerned with change in one object causing change in
another, we are more interested in the evolutionary pressure
applied by changes in multiple components. To continue

3The game Yavalath was designed by Browne’s Ludi system and went
on to be published by independent boardgame manufacturer Nestor Games.

4The canonical example here is possibly Elite or, more recently, Dwarf
Fortress - http://www.bay12games.com/dwarves/

the biological analogy, while co-evolution is concerned with
close relationships between two species, we are more inter-
ested in the ecosystem as a whole, and how the evolution of
one strand can change the objectives of other strands.

V. FURTHER WORK

While the current space of possible games is broadly
inherited from [10], it is not expressive enough to further
test and demonstrate the capabilities of an autonomous game
designer. The core of ANGELINA will be expanded to
include a modular rule system and a search space which
contains a larger variety of game types. Many arcade games
are developed using a very small cache of rules. For instance,
Frogger is a visually distinct game from Pacman, but only
includes one new rule (a win-condition for being within
a defined area of the map). A larger state space would
improve ANGELINA’s chances of finding new game types.
The inclusion of more unusual rules, such as the ability for
NPCs to change their type from one colour to another, would
hopefully allow exploration of a less well-known state space
and uncover arcade designs that are not so well known, but
enjoyable to play.

We believe that our approach to the evolutionary design
of multi-faceted artefacts, through self-aware evolutionary
strands that interact with each other, is applicable to many
complex design tasks besides the design of videogames. We
are interested in generalising the techniques we have begun
to explore here, and developing a framework for creative
systems which concern themselves with creating complex,
interconnected artefacts. We are interested in applying these
techniques to tasks such as the editorial design of magazines
and newspapers, where space restrictions and aesthetic con-
siderations conflict in interesting ways, and the construction
of narratives, where there is conflict between the strands
of narrative, the histories of characters, and the simulation
of the world in which the plot is set. We hope that multi-
faceted evolution’s approach to complex artefact generation
will provide a new way of considering these problems.

One advantage of generalising such a framework would be
the simpler construction of tools that use evolutionary tech-
niques to assist humans in creative tasks. As we demonstrated
in section 4, ANGELINA can develop entire games from
scratch, but can also work from partially-specified starting
points as well. We can envisage a computer-aided design
tool that uses multi-faceted evolution to fill in the blanks in
a creative design that a person has begun, be it a videogame
design or otherwise.

VI. CONCLUSIONS

We have presented a new approach to evolving arcade-
style game designs through evolution, by maintaining indi-
vidual evolutionary processes that can inspect and affect the
fitness functions of other strands as they evolve. We have
demonstrated this approach through the ANGELINA system,
a game designer that produces simple arcade games from
scratch by combining rulesets, maps and object layouts that

it has designed itself. We demonstrated how this forms a
single process, through multi-faceted evolution.

We showed that individually fit game components can-
not be blindly composed together, and showed how AN-
GELINA’s method for evolving these components in tandem
with one another is effective and flexible. We discussed
examples of these games and showed how ANGELINA was
able to rediscover old arcade game archetypes, as well as
reveal game designs that were novel and unexpected. Finally,
we outlined our plans for a generalisation of the techniques in
this paper to design better games, and other creative artifacts.

Some of the games compiled by ANGELINA have been
put online, including some outlined in this paper5. We hand
selected these from a dozen runs of ANGELINA as being
fun or offering an interesting challenge. We hope to expand
these in the future, as ANGELINA’s capabilities broaden.

REFERENCES

[1] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. HagelbŁck, and G. N.
Yannakakis, “Multiobjective exploration of the starcraft map space,”
in IEEE Conference on Computational Intelligence and Games (CIG),
2010.

[2] N. Sorenson and P. Pasquier, “Towards a generic framework for
automated video game level creation,” in EvoGAMES, 2010.

[3] D. Ashlock, “Automatic generation of game elements via evolution,”
in IEEE Conference on Computational Intelligence and Games (CIG),
2010.

[4] G. Smith, M. Treanor, J. Whitehead, and M. Mateas, “Rhythm-
based level generation for 2d platformers,” in Proceedings of the 4th
International Conference on Foundations of Digital Games, 2009.

[5] D. Ashlock, C. Lee, and C. McGuinness, “Search based procedural
generation of maze-like levels,” in IEEE Transactions on Computa-
tional Intelligence and AI in Games, 2011.

[6] A. Martin, A. Lim, S. Colton, and C. Browne, “Evolving 3d buildings
for the prototype video game subversion,” in EvoGAMES, 2010.

[7] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Evolving content in the
galactic arms race video game,” in Proceedings of the 5th international
conference on Computational Intelligence and Games, ser. CIG’09,
2009.

[8] C. u Lim, R. Baumgarten, and S. Colton, “Evolving behaviour trees
for the commercial game defcon,” in EvoGAMES, 2010.

[9] A. M. Smith and M. Mateas, “Variations forever: Flexibly generating
rulesets from a sculptable design space of mini-games,” in IEEE
Conference on Computational Intelligence and Games (CIG), 2010.

[10] J. Togelius and J. Schmidhuber, “An experiment in automatic game de-
sign,” in IEEE Conference on Computational Intelligence and Games
(CIG), 2008.

[11] M. J. Nelson and M. Mateas, “Towards automated game design,” in
Artificial Intelligence and Human-Oriented Computing. Springer,
2007, pp. 626–637.

[12] J. McGonigal, Reality is Broken. Jonathan Cape, 2010.
[13] R. Koster, A Theory Of Fun For Game Design. Paraglyph Press,

2004.
[14] Y. Babovich, E. Erdem, and V. Lifschitz, “Fages’ theorem and answer

set programming,” in In Proc. NMR-2000, 2000.
[15] F. Fages, “Consistency of clark’s completion and existence of stable

models,” 1994.
[16] C. Browne and F. Maire, “Evolutionary game design,” in IEEE

Transactions on Computational Intelligence in AI and Games, 2010.
[17] P. Saetrom and M. Hetland, “Multiobjective evolution of temporal

rules,” in 8th Scandinavian Conference on Artificial Intelligence, 2003.
[18] C. Nachenberg, “Computer virus-antivirus coevolution,” Commun.

ACM, vol. 40, January 1997.
[19] J. R. Koza, “Evolution and co-evolution of computer programs to

control independently-acting agents,” in Proceedings of the first in-
ternational conference on simulation of adaptive behavior on From
animals to animats. Cambridge, MA, USA: MIT Press, 1990.

5http://www.gamesbyangelina.org

