Hybrid Procedural Content Generation: A Proposal

Michael Cook and Simon Colton®

Abstract. Procedural content generation in games tends to target
content that is abstract, dry and devoid of connection with the game’s
meaning. This paper proposes merging user-driven content genera-
tion approaches with procedural content generation to create a new
paradigm which we call Hybrid Procedural Content Generation. By
replacing aspects of existing procedural generation techniques with
humans, we can give rise to new kinds of game experiences.

1 Introduction

Procedural content generation and user-generated content (PCG and
UGC respectively) are two concepts which are familiar to anyone
who has played or made games in the past decade. The idea that
content for a game can be created after it has shipped enables many
new kinds of game experience, as well as engaging players in new
kinds of activities, including creative involvement in the game. They
also provide interesting research platforms to ask new questions and
build intelligent systems to help shape these new ideas about games.

In this paper we introduce the concept of Hybrid Procedu-
ral Content Generation (HPCG), a fusion of user-generated and
procedurally-generated content that similarly offers new kinds of
game design and also new opportunities for artificial intelligence in
games. By incorporating players into procedural content generation
systems we can produce hybrid systems that are much stronger than
standard procedural or user-driven generative approaches.

We illustrate the concept of HPCG by giving three examples of
prototype games which incorporate some kind of HPCG system into
their game design. Murder is an assassination game set in a Cluedo-
esque mansion at a dinner party, in which the player must perform
several narrative actions and then kill another character at the party.
Mystery is a Poirot-style detective game in which the player must
solve a murder using deduction and exploration. The Book Of A
Thousand Tales is a roleplaying game in which the player leads a
band of heroes through a branching narrative.

The remainder of the paper is organised as follows: in Background
we discuss both PCG and UGC and their relative weaknesses. In Hy-
brid PCG we briefly introduce the concept of HPCG, its motivating
factors and how we see it being used within games. We then de-
scribe two simple game designs that comprise a HPCG system. Fi-
nally in Opportunities for Computational Intelligence we talk about
the longer-term impact of such approaches and the potential for new
research directions HPCG could give rise to. We then sum up our
proposal in Conclusions

2 Background

According to [6], most PCG systems can be categorised as either
constructive or generate-and-test systems. In the former, content is

1 Computational Creativity Group, Goldsmiths, University of London

gradually built up out of successive passes at generation, and each
layer of generation is “guaranteed to never produce broken con-
tent” [6]. Spelunky 2 is a good example of this style of generation,
where dungeon levels are built out of several different layers of con-
tent which are hand-crafted to some extent to guard against failure
[7]. Generate-and-test approaches employ a generative step that pro-
duces content, and then an evaluative step which assess what was
generated and either triggers further generation/alteration (such as
an evolutionary system which will run many times to evolve a re-
sult, as in [2]) or simply reject the generated content and begin again
from scratch. Dwarf Fortress > employs a generate-and-test approach
during its world generation.

PCG has been applied very effectively to many kinds of content
generation, particularly level design [3] and general game content
such as item generation in roleplaying games. However, many types
of content are hard to generate using either of the above approaches.
In particular, content which requires an understanding of context of
the real world is hard to generate, such as game narratives or repli-
cating human-like qualities in NPC actions such as deception or fal-
libility. These dynamic kinds of content rely on an understanding
of the real-world, from cultural knowledge (like understanding sym-
bolism when constructing a narrative) to common-sense reasoning
(when deciding how a character should react to a particular situa-
tion, for instance). As a result, most content generation focuses on
abstract data that is detached from the game’s setting and theme (the
levels in Spelunky are simply arrays of numbers, for instance — the
system does not need to understand what a cave looks like or what
an explorer does).

User-generated content (UGC) is also a common feature in many
modern games. Allowing the player to create content for a game both
increases the amount of content available at no extra cost to the de-
veloper, and gives players a sense of engagement and investment in
the game world by allowing them to contribute to it. Spore * is a
prominent example of user-generated content — players designed an-
imal species for inclusion in their games using an assortment of body
parts and customisations. These animal species propagated not only
throughout the player’s world but also to their friends’ worlds via
cloud sharing online.

UGC is one of the biggest recent trends in the mainstream industry
thanks to the enormous success of Minecraft 3. which merged user-
generated content with the core mechanics of the game. In Minecraft,
generating content is how one plays the game: building structures,
artworks and shaping the world as the player sees fit. UGC has draw-
backs, however. In the case of generators like Spore’s, which present
themselves as tasks outside of gameplay, the user is consciously

2 Mossmouth Games, 2009
3 2006, Bay Twelve Games
4 Maxis, 2008

5 Mojang, 2011

aware that they are generating content. As a result they are thinking
about how the content will be perceived by others, which has an im-
pact on how and what they create. This can be seen somewhat in the
comedic nature of many of Spore’s creatures — players know they are
creating things which will amuse or confuse other people. While this
may be seen as a positive for some tasks (in Spore’s case the objec-
tive is specific content generation) because the player is consciously
considering the design of their content, for other tasks it may be less
good — particularly those that take place in a fictional context. For ex-
ample, in Minecraft it is possible to construct floating houses, which
may break the suspension of disbelief for other players. It is prefer-
able here that all players construct buildings in a similar way, so that
they can maintain the narrative fiction for everyone equally.

The second drawback is that players tend not to be designers, and
UGC systems rarely have any kind of feedback mechanism or assis-
tive aspect to them. Content is either used wholesale or not used at
all, and frequently even this decision is made by players rather than
an intelligent software system. Creatures in Spore are uploaded and
shared online, structures in a Minecraft world exist for all players
in that world and can’t be edited or changed by the game. UGC is
all-or-nothing and thus lives or dies on the skill and appreciation of
the players using these systems. In some cases this can be worked
around — ratings systems in games such as LittleBigPlanet ¢ simply
filter the best creations and downplay the rest. In this case, however,
UGC simply becomes a means by which to discover talented people
and get them to produce content, rather than allowing everyone to
contribute equally.

3 Hybrid PCG

We propose that PCG and UGC approaches can be combined in
a single approach that solves some of the problems mentioned
in the previous section while opening up new challenges and re-
search questions for computational intelligence research to tackle.
We call this combined approach Hybrid PCG because it synthesises
software-driven content generation with player activity. The underly-
ing premise is to replace generative systems or parts of systems with
playable games, resulting in new ways of generating, evaluating and
filtering content, not just for single games by potentially for many
different games at once.

To illustrate this approach, we will describe in this section two in-
development game prototypes, Murder and Mystery, which utilise a
HPCG approach to generate a large corpus of content and filter it.
These games not only supply content to one another: by generating
content that is transferred between games, they also produce a corpus
that can be used by other games or intelligent systems. After describ-
ing the games we will discuss the new affordances such a setup offers
and then lead into a discussion of the opportunities for computational
intelligence they represent.

3.1 [Illustrative Example - Murder/Mystery

In Murder the player takes on the role of a character attending a din-
ner party at a mansion, as either a guest, a family member, or an em-
ployee of the host. Like most of the people present they have a mo-
tive to kill the host, and must do so at some point during the evening.
In addition, they must also complete one or more objectives relat-
ing to their motive (such as confronting the host in an argument, or
breaking into a room and stealing something). The game operates in

6 Media Molecule, 2008

a ‘sandbox’ style, where the player can explore the house freely and
approach their objectives in many different ways. However, the game
simulates player action carefully and records things like fingerprints
left on surfaces, sightings by other people in the house, and so on.

At the end of the game, once their tasks are completed, the player
can choose to ‘discover’ the body themselves or wait for it to be dis-
covered by someone else. They are then asked to provide an account
of their whereabouts for the evening by being shown their actual
movements and then editing them to change their version of events
— for example, by claiming they were never in a particular room at
a certain time, and so on. The game then assesses how quietly and
quickly they completed the game, as well as how well their alibi
compares to the evidence they left behind, and gives them a rating.

In Mystery the player takes on the role of a detective tasked with
solving a murder at a dinner party. They play a point-and-click ad-
venture in which they can examine the alibis and backgrounds of the
characters present, ask for accounts of events, and walk around the
house looking for clues or analysing parts of the crime scene. The
case files are built from case descriptions produced by Murder, po-
tentially converted using an automated system that can filter the case
to make it harder or easier (by making certain evidence more or less
conclusive or adjusting the memories of other characters, for exam-
ple) or simply presented to players unaltered — we discuss this further
in section 4.

There is a time and resource limit on solving a case - if the player
takes too long or uses up all of their investigative resources (such as
sending objects for fingerprinting) the case remains unsolved. What-
ever the result, the case file data gets sent back to a central server
which both affects the value of a case (repeatedly unsolved cases rise
in value to detectives) and the reputation of the player who created
the case file in Murder.

3.2 HPCG in Murder/Mystery

Both Murder and Mystery are standalone games that are effectively
separate from one another. If the data format for case files is open,
anyone could design a game which retrieved case files produced by
Murder players and use them in their game. Similarly, several games
might produce case files with the right format that could be used by
Mystery as game content for the player to investigate and solve. The
games are not intrinsically linked except through the exchange of
information about the case files and whether or not they are solvable
by players.

In the language of PCG, players of Murder are acting as a gen-
erator of case files, in the first step of a generate-and-test system.
There are two important consequences of this. Firstly, unlike UGC
approaches, the players are engaged in a game while generating con-
tent, pursuing objectives in whatever way they see fit. We argue that
this leads to more natural behaviour by players and therefore a more
human-like kind of content generated than if players had been asked
to manually design case files as authors. Secondly, the content being
generated is complex - it involves creative problem-solving and asks
the player to respond to social situations (such as confronting some-
one about a personal relationship, or making small-talk at a dinner
party). Such content is difficult to generate automatically without a
lot of involvement from a designer, and even with such involvement
the content is likely to be lacking in variety over a long period of play.
By using players to generate it, we make this difficult generative task
easier.

To continue the PCG metaphor, players of Mystery act as evalua-
tors of the content generated by Murder players. Let us assume that

Mystery either does not edit the case files at all, or at most edits them
in order to ensure that they can be solved by some process of deduc-
tion (by ensuring that at least one piece of incriminating evidence
exists, for instance). Players solving, or attempting to solve, cases
are providing data about how easy a case is to solve. The routes play-
ers took, the order in which they examined evidence or questioned
people, and their ultimate success at solving the murder can all be
recorded as additional metadata attached to the original case file. In
the same way that people can be used to generate content that re-
quires complex understanding of the real world, people can also be
used to provide evaluation metrics that would be difficult to encode
into a system by hand (and too subjective to source from a single
designer).

3.3 Desirable Properties of HPCG Scenarios

While this remains a preliminary proposal for HPCG, and the idea
still needs much exploration, we posit that certain game designs or
scenarios are better suited for the application of HPCG. We discuss
them briefly here, and hope to clarify this in future work after more
experimentation and prototype development.

3.3.1 Asynchronous Activity

The most important property for employing HPCG is that the games
involved deal with asynchronous activity. Murder/Mystery work well
because the two game phases are chronologically non-overlapping:
one player commits a crime, then after they are finished the second
player can arrive and solve it. This means that no player is left waiting
for action to be completed in real-time, which could affect the experi-
ence of either player and slow down gameplay, and it also means that
any PCG systems have complete information from the other game or
games when they begin generating content.

3.3.2 Well-Defined And Decoupled Interfaces

Keeping the interfaces between games as simple as possible is a good
feature if the designer intends for other systems to feed data into
the HPCG besides their own. For Murder/Mystery we noted that in
theory it is possible for other games to generate crimes for Mystery
to solve, or to design other games which use Murder case files as
input content. In order to enable this, it’s important that the interfaces
between the games are very well-defined and public so that other
developers can take advantage of them. Making sure the games can
export data as well (such as putting Murder’s case files in external
text documents) also makes this easier.

3.3.3 Guided Player Activity

Depending on the kind of content being generated or the roles the
players are taking on in the larger HPCG system, it may be desirable
for the gameplay to be very directed or guided. The reason for this
is that the HPCG system is making assumptions that the data they
collect represents a certain kind of behaviour from the player - for
example, committing a crime, not wanting to leave evidence behind,
acting in order to blend in. It’s important to be able to encourage
and motivate the player to work towards certain objectives so that
these assumptions carry through into the data they generate, and can
then be relied upon to generate good quality content in other areas
of the HPCG system. If a player begins acting differently, or isn’t
sufficiently motivated to play properly, the HPCG system will still

proceed with the data and this can generate undesirable outcomes in
other games.

4 Opportunities for Computational Intelligence

On the surface, HPCG appears to replace software-driven PCG sys-
tems with players that perform the same tasks, therefore resulting
in systems that involve less computational intelligence, rather than
more. However, HPCG systems open up new research questions that
demand answers, and also create opportunities to build even more
complex generative software. In this section we discuss several pos-
sibilities in brief.

4.1 Learning From Human Generators

One possible outcome from HPCG systems is that they eventually
transition back into being PCG systems which use a player’s in-game
activity as a source of training data. In [4] Orkin and Roy describe
The Restaurant Game (TRG), an experiment in which participants
played through an interactive scenario in pairs and their behaviour
was then recorded and later analysed using machine learning to build
behaviour models of characters in those situations. TRG suffers from
some of the same problems that we mentioned in the context of UGC
earlier in the sense that players are aware they are generating content
as they play. Nevertheless, the authors’ argument is that automatic
content generation (in this case speech and behaviour patterns) can
be mined from large-scale data corpora [5].

By employing HPCG to tackle complex generative tasks, like the
generation of creative behaviour in Murder, such systems produce
special cases of the kinds of corpora Orkin and Roy present with
The Restaurant Game. They are special cases in the sense that they
are obtained through observing players at a time when their primary
concern is completing a game rather than performing for another ob-
server (whether that observer is a human or a data-mining program).
The player is not participating in an experiment, nor is their ultimate
goal to provide good data. Instead, they are focused on achieving
objectives and are immersed in a ludic task. As a result, we argue
that their behaviour is more natural and as a result more valuable, re-
sulting in useful corpora of data that can be mined, as with TRG, to
obtain behaviour. In the case of games such as Murder, the available
information is particularly valuable because the player is providing
information that an ordinary PCG system would not have access to
- such as solving problems in creative or innovative ways, as well as
failing at tasks in a natural, humanlike way.

4.2 The Computer As Curator

The game Murder can be seen as a generator of content for the game
Mystery, but raw generated case files from the game may not be in-
teresting, fun to solve or, indeed, solvable at all. Building Murder as
a HPCG system provides us with a wealth of generated murder cases
for players to solve, but it doesn’t guarantee their quality or difficulty
level. If a player plays a perfect game, it will be fairly unsatisfying
for players of Mystery to repeatedly fail to solve. Similarly, the player
may make an obvious mistake that renders a case trivial. This poses
an interesting problem: how can software curate, tweak and improve
raw HPCG output to ensure consistently entertaining content for an-
other player?

There are many factors to tweak in a case file produced by Murder
—both the actions of the players and the other characters, the evidence
left behind, the ordering of events. Altering this information requires

an understanding of how people’s behaviour is interpreted by oth-
ers, to assess whether a change will make a case easier or harder to
solve for a player detective. HPCG systems leverage human play-
ers to solve creative, complex problems that are hard to solve using
generative software alone. It follows, therefore, that curating and im-
proving the results of a HPCG problem requires an understanding of
how these players reason about problems and act in certain situations.
The task of curating complex creative content sourced from humans
may have parallels with the problem of curating and evaluating in
Computational Creativity [1].

Recall that in section 2 we discussed the problems with existing
UGC and PCG paradigms. One problem with UGC approaches is
that players are not designers, and expecting them to be able to pro-
duce quality game content, either knowingly or not, is unreasonable
and often results in a large volume of low-quality content that no-
one wants to use. HPCG offers an opportunity to leverage the output
of users and improve it using computational intelligence, obtaining
content that has its foundations in the creativity of real players, but
has been curated and refined by software to be of higher quality.

5 Acknowledgements

The authors would like to thank the reviewers who provided helpful
feedback which improved this paper. This work was sponsored in
part by EPSRC grant EP/L00206X.

6 Conclusions

In this paper we briefly outlined a proposal for Hybrid Procedural
Content Generation or HPCG, a synthesis of user-generated con-
tent and procedural content generation where subsystems in a content
generation pipeline are replaced with players playing games achiev-
ing similar tasks. We illustrated the idea with two connected games
— Murder and Mystery — in which players of the former acted as a
generator of content which was then filtered and evaluated by play-
ers of the latter. We discussed what new avenues of research such an
approach might offer and how it solves some of the problems that
procedural content generation and user-generated content can have.

This paper is an early proposal for such games and systems to be
designed, but we hope that it will spark discussion and potentially
lead to interesting new kinds of games and intelligent software. We
believe that working with game developers may be of essence here,
to leverage good game design alongside new kinds of computational
intelligence. Collaboration is difficult, but we believe this is a promis-
ing avenue to explore.

REFERENCES

[1] Simon Colton, Michael Cook, Rose Hepworth, and Alison Pease, ‘On
acid drops and teardrops: Observer issues in computational creativity’, in
Proceedings of the 7th AISB Symposium on Computing and Philosophy,
(2014).

[2] Erin J Hastings, Ratan K Guha, and Kenneth O Stanley, ‘Evolving con-
tent in the galactic arms race video game’, in IEEE Symposium on Com-
putational Intelligence and Games, (2009).

[3] Britton Horn, Steve Dahlskog, Noor Shaker, Gillian Smith, and Julian
Togelius, ‘A comparative evaluation of procedural level generators in the
mario ai framework’, (2014).

[4] Jeff Orkin and Deb Roy, ‘The restaurant game: Learning social behav-
ior and language from thousands of players online’, Journal of Game
Development, (2007).

[5] Jeff Orkin and Deb K. Roy, ‘Understanding speech in interactive narra-
tives with crowdsourced data.’, in AIIDE. The AAAI Press, (2012).

[6] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and
Cameron Browne, ‘Search-based procedural content generation: A tax-
onomy and survey’, IEEE Transactions on Computational Intelligence
and Al in Games, (2011).

[7]1 Derek Yu. The full spelunky on spelunky, 2012.

