From Mechanics to Meaning and Back Again:
Exploring Techniques for the Contextualisation of Code

Michael Cook and Simon Colton
Computational Creativity Group
Goldsmiths College, University of London
http://www.doc.gold.ac.uk/ccg/

Abstract

Code generation is a promising new area for the auto-
matic production of mechanics and systems in games.
Generated code alone is not sufficient for inclusion in
a rich, fully-designed game, however - it lacks context
to bind the functionality of code to the metaphorical set-
ting of the game. In this paper we explore potential solu-
tions to this problem, both in terms of creative systems
which co-operate with human content, and the possibil-
ity for contextual meaning in autonomous, human-free
creative systems as well.

Introduction

In (Treanor 2013) the author describes the separation be-
tween the mechanics of a game and it’s instantial assets -
the visual and aural content that applies a theme to a set of
mechanics. Through rebranding a simple arcade game Tre-
anor shows how different sets of instantial assets can lead to
different interpretations of a game, and also shows how dif-
ferent assignments of affect to game components can shift
our perception of what is occurring when a particular cause
and effect sequence is triggered in a game. Figure 1, from
Treanor’s work, shows four different versions of Kaboom, a
simple arcade game. In the original version of the game, a
bomber drops explosives from the top of the screen, which
the player must catch before they reach the bottom of the
screen. Failing to catch enough bombs ends the game. In
Treanor’s remappings, the visual theme shifts the story the
game is telling, in some cases completely reversing the im-
plications of the actions of the player.

In (Nelson and Mateas 2007) and (Nelson and Mateas
2008) the authors describe a system which can reskin a set
of game mechanics dynamically, given nouns and verbs de-
scribing objects and their interactions with one another. This
allows for the input phrase shoot pheasant to be linked to
known verbs and nouns using synonym lookups, and ulti-
mately transferred into potential game mechanics (such as a
game where the player, controlling a duck, must avoid being
shot at). Often, the system is capable of providing alternative
designs for a game using the same input phrase. For exam-
ple, for shoot pheasant the system can also produce a game

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

$

.
s

Figure 1: Four visual redesigns of the arcade game Kaboom,
from (Treanor 2013).

where the player controls a crosshair and must shoot at pass-
ing ducks. Given enough initial information in its mechanics
database, and a broad enough index of synonyms, the system
can provide multiple recontextualisations of a game scenario
- though the system is of course unable to invent new entries
into its database, or make connections outside of its under-
standing of synonyms.

The notion of applying theming onto suitable game me-
chanics has been developed further by Treanor and others
with the Game-o-Matic (Treanor et al. 2012a), a design tool
which can take conceptual maps and select small game me-
chanics (which Treanor calls micro-rhetorics (Treanor et al.
2012b)) that can be composed together and tweaked to suit
the concepts being expressed. As with Nelson and Mateas’
work above, the system connects concepts provided by a
user with known mechanical ideas in a database, and uses
this to shape the structure of a game. This makes it a pow-
erful tool for assistive design, being able to combine knowl-
edge about a real-world concept with specialised knowledge
about game mechanics and their meanings. However, in all
of the work we have discussed so far, both the source con-
cept maps and the target game mechanics are designed and



annotated by people. Removing either of these components
makes the task much more complex.

In (Cook et al. 2013) we introduce Mechanic Miner, a
system which modifies code using metaprogramming tech-
niques to invent new game mechanics. In the paper we argue
that a system that can generate mechanics through code of-
fers a greater chance for novelty and surprise compared to
existing grammar-based or abstracted approaches. In (Cook,
Colton, and Gow 2013) we provide more discussion of Me-
chanic Miner and the challenges surrounding code genera-
tion for creative purposes. In particular, we discuss what we
refer to as the generation gap — that is, the disconnect be-
tween the functionality of what is generated (e.g. some code
that modifies a variable called health) and the metaphorical
interpretation of what the code appears to do within the con-
text of the game (e.g. the hero is injured by a dragon).

It should be noted that the term context when applied to
the medium of videogames can refer to many different com-
ponents of a game. Contextual information can be entirely
surface-level — such as the backstories of fictional charac-
ters — and have little or no tangible role within the game’s
functionality. In this paper we are interested in how the pro-
gram code describing a game’s mechanics is related to the
contextual meaning of a game. As we saw in the example
of Kaboom, this is primarily achieved by expressing map-
pings between nouns and verbs in the real world, and objects
and interactions in the game’s code. Indeed, the word verb
is common parlance among videogame designers, referring
to a means of interaction with the game world.

To highlight the problem of mapping real-world context
to a piece of code, consider the following segment:

if (Keys.isPressed ("spacebar") {
for (Agent a level.agents) {
a.destroy () ;

}

This code describes functionality similar to a simplified
smartbomb, an item in the arcade game Defender (Jarvis and
DeMar 1980). When used, all the enemies in the area are
destroyed. This makes sense within Defender’s metaphori-
cal context - you are controlling a spaceship outfitted with
futuristic weapons, fighting against enemy spaceships. By
contrast, such a code segment would not be appropriate in a
game such as Versu (Evans and Short 2013), an interactive
fiction game about social conventions in Jane Austen nov-
els. As with Treanor’s rebranding of Kaboom, by changing
the instantial assets of the game which the code operates on,
we shift the meaning of the code — in this latter case, to a
meaning which is nonsensical bordering on meaning/ess.

To a system generating code, however, the metaphori-
cal concepts are not visible. Relationships that are clear in
data — such as commonalities in code, colocation of objects
within a co-ordinate system, and so on — do not alone encode
the contextual information that separates futuristic spacewar
from Edwardian period drama. This complicates the process
of generating code for use within games — without an aware-
ness of this context, we cannot robustly and confidently gen-
erate code without heavy filtering and guidance from hu-

man designers, which is not always practical (in the case
of mixed-initiative systems that may be collaborating with
people who cannot program) or desirable (in the case of au-
tonomous game designers where the aim is to develop games
without human intervention).

In this paper we outline several possible ways in which
code generation systems might be able to reason about or
glean information on the context the game is operating
within. Some of these proposed techniques are simple to
implement, but do not entirely solve the problem in a ro-
bust and human-free manner. Others are more speculative,
but offer longer-term goals for systems that aim to generate
code for creative use within videogames.

Extracting Context

In most examples of content generation, the systems in-
volved are not working from scratch. Mixed-initiative sys-
tems work in conjunction with people, and therefore receive
initial content from their users. Many autonomous systems
work from a base of existing code, or have access to lower-
level libraries that describe a generic game engine. In such
cases, context already exists embedded into the content gen-
erated by people. If we can build our systems in such a way
that they are able to understand and extract this pre-existing
context, we can use it to detect existing meanings in games,
and guide the production of content along the same lines.

Implicit Meaning In Naming And Typing

While we stated in the introduction that code is devoid of
context, human-authored code can carry some forms of con-
text at the level of symbols and syntax. While the function-
ality and structure of code is agnostic to context, many pro-
gramming language practices are developed to embed infor-
mation and improve readability. For instance, variable and
method names have established patterns and often imply
specific real-world features as a result. Consider the follow-
ing variable declaration from a core game class in the Flixel
game library:

public class FlxSprite() {
public boolean alive;

/...

The variable alive is named specifically to be descrip-
tive and informative. The types and the names of variables
include information that hint at contextual scenarios that are
expected to arise. Through the use of knowledge databases
such as WordNet (Miller 1995) and ConceptNet (Liu and
Singh 2004), an automatic system analysing this code may
be able to make certain inferences about the game state. For
example, Boolean types such as alive give us an under-
standing of the states that this variable can be in with relation
to the target object. WordNet provides us with antonyms,
suggesting that a false value for this field may imply the
target object is ‘dead’. We can take this analysis further
by using SentiWordNet (Baccianella, Esuli, and Sebastiani
2010) to infer which of the two states, if any, has a positive
affect associated with it. SentiWordNet suggests that alive is
a positive term, while dead is overwhelmingly negative.



From a boolean variable with a single name we have now
extrapolated two states, with definitions and associated sen-
timents. In order to understand how this variable relates to
the systems and objects within the game, we can now search
for code segments that alter this state in the player object
and, using the assumption that the player wishes to be in
positive-affect states, begin to build up a graph of positive
and negative relationships between objects.

This approach offers interesting challenges in computa-
tional linguistics. Some naming conventions or types of lan-
guage are used to describe the architecture of game projects
rather than the specific game’s setting itself. A class named
Agent might refer to an NPC in a spy game or it may sim-
ply be a generic term for an intelligent entity in a simulation.
Understanding what data is exposed as surface-level them-
ing (such as the number of gold coins collected) as opposed
to data which is only used internally (such as the game’s
co-ordinate system which the player may not be aware of)
is also important. The ability to analyse arbitrary codebases
and make such judgements will be a difficult task, and may
require a large-scale analysis of many game codebases to try
and extract common linguistic patterns that are unrelated to
the game’s context.

State Change Detection Via Model Checking

Model checkers (Clarke, Emerson, and Sistla 1986) are tools
which are typically employed to check that a piece of code
meets a written specification. By expressing a condition that
we wish to investigate, a model checker can not only verify
if it is possible to reach this state, but can show us which
code segments are executed in achieving this, and what in-
puts may cause this to happen. Such tools could be employed
to detect relationships built into the game codebase that are
hard to detect merely by observing code, but may be obvious
when executing it. Consider the following code blocks:

//... in class GameState
for (Agent a level.agents) {
if(a.collidesWith (player)) {
player.kill();
}

}

//... in class Player

public void kill () {
this.alive = false;

}

Using model checkers, we can analyse this code to
find specific program traces that cause certain segments of
code to be executed, such as the assignment of alive to
false. In doing so, a system may be able to infer that
the Agent objects in the list level.agents, as well as
the player object, are all involved in the trace of chang-
ing the player’s alive state. While this set of objects is
likely to be extremely large for some codebases and variable
changes, analysis over multiple affectively-named variables
such as alive may allow such a system to infer antagonis-
tic relationships between, for instance, Agent objects and
Player objects. This is enough to begin building a model

of interactions between objects, and interactions that are le-
gal within the game’s metaphorical environment (such as an
object being capable of dying).

Explicit Annotation

An alternative approach to extracting meaning from human-
authored code is the use of metadata written with the ex-
plicit intention of being read by an automated system. In
Java, for example, annotations can be defined and attached
to language abstractions such as field and methods. Consider
the following variable declaration:

@verbal {"speed"}
@heightened{"fast"}
@lowered{"slow"}
float velocity;

The lines beginning with @. . . can be read by preproces-
sors or Java itself at runtime, and parameterised data can also
be extracted. Here, we have defined three annotations for
the field velocity. The first is a straight synonym for the
field’s name, in more natural English that might suit the tone
of the game better. The second and third annotations are spe-
cific descriptors for higher and lower states of the variable.
This is crucial in disambiguating the use of the variable, and
helps the system make sense of situations in which the vari-
able is modified. Consider the variable health, referring
to the number of health points the player has remaining. The
variable itself carries no particular affective meaning, so ap-
proaches described in the previous sections would not ap-
ply. However, increases or decreases to the variable describe
healing and damage respectively, which are highly affective
situations, and thus important for the system to recognise.

This requires large amounts of initial input from designers
or programmers, yet the resulting system is more robust and
carries additional information in a subtle and simple way (re-
lying only on single words). This may be more appropriate
for larger development projects that rely on large codebases
and teams. This approach is unlikely to provide rich con-
textual information in isolation, however, as single words or
phrases may not be enough to convey information about the
kinds of systems that are at work, or what the player’s moti-
vation is (both enemies and the player have health variables,
but the player isn’t interested in increasing enemy health).
Therefore, this approach may be best combined with other
approaches from this section.

Relating Context To Code

In the previous section, we described potential methods
for automatically extracting existing context from code. In
many situations we may not have existing context, however,
or we may wish to invent entirely new contextualisations of a
game (such as Treanor’s retelling of Kaboom). In this case,
we need to design methods by which a system can proac-
tively apply context to code, either by inventing entirely new
applications of meaning, or by applying abstract knowledge
about the world to the game’s existing structure.



Established Translations of Reality

Although the task of completely specifying real-world sys-
tems is too great, it may be possible to partially specify in-
complete models of the world that can be extrapolated to
cover combinations of systems or continuous data. A good
example here is to consider the standard two-dimensional
platform game and how it represents real-world physics. Ob-
jects have velocity, acceleration, gravity, position in world
space and so forth. This can be built into an abstract model,
with annotations describing processes that change the state
of an object. For example, we might express a relationship
between velocity and a change in position, relating it to
words such as ‘movement’ or ‘jumping’ as we did with ex-
plicit annotation.

The benefit of an abstract model that is separate from a
codebase is that it is implementation-independent, and can
concentrate on expressing more interesting relationships be-
tween objects without worrying about the finer details of
code that may obfuscate these more important meanings. For
instance, the notion of being alone in a game is expressed
as an object that is not near other objects (or perhaps only
objects of certain types). Notions of closeness, relative dis-
tance, and affective states related to these, can be simply de-
scribed and related to game state (such as co-ordinates or
ranges for variables) rather than referring to specific code
blocks or input chains.

For the purposes of autonomous game design or compu-
tational creativity, this solution is considerably less desir-
able than others. The information given is highly prescrip-
tive, and while systems may be able to elaborate on the in-
formation given to them creatively, it is unlikely that they
will be able to use this information to extrapolate new re-
lationships about the world. This limits the chance for nov-
elty or surprise in the system. However, an abstracted model
of a game scenario may be useful for mixed-initiative tools
where both human and machine benefit from considering the
game design at a higher level of abstraction. It also eases lin-
guistic annotation of game states, and may help systems de-
scribe mechanical systems within games. A large proportion
of code in an average game is written to achieve subgoals
within a larger algorithm rather than meaningfully making
high-level changes to the game state. It is unhelpful to fo-
cus on every detail of a block of code, as much of it will be
unrelated to describing the overall effect of the current ac-
tion being executed. By building an abstract model to define
only that which we are interested in describing, the task of
generating text to describe a process is simplified.

Assertive Creativity

So far, all of our proposed methods have assumed that the
goal of the system in question is either to extract context
and meaning from existing code, or apply meaning to gen-
erated code in a way that conforms to models of reality and
an understanding of metaphor in videogames. In this sec-
tion we propose an alternative approach wherein the system
proactively assigns both instantial assets and theming onto
in-game mechanical relationships that may not make sense
in accordance with expected ‘game logic’.

Autonomous game designers as independently creative
systems has arisen as a topic in computational creativity
multiple times, such as (Smith and Mateas 2011) or (Cook,
Colton, and Gow 2013). The systems described, hypotheti-
cal or otherwise, are intentioned, autonomous systems that
create games in a way that is as independent as possible.
While the games produced by automated design systems
may be abstract and symbolic, it is likely that many of the
games designed by such systems will be situated within a
real-world or fictitious metaphoric context. It is assumed that
this context must make sense from a human perspective, as
all existing examples of non-abstract game design are de-
signed from such a perspective.

However, there is no reason why this should necessarily
be the case. Some proposed methodologies for evaluating
creative systems prioritise the process above the artefact,
such as the FACE model described in (Colton, Charnley,
and Pease 2011). For a system attempting to create a con-
text within which to situate an abstract game design or piece
of generated code, we might therefore argue that the process
by which the context is generated is more important for the
system’s overall perceived creativity than whether or not the
context makes sense to human observers.

We can therefore imagine an autonomous game design
system which generates code and assertively assigns mean-
ing and context to it, regardless of its agreement with
generally-accepted commonsense knowledge. To illustrate
what we mean by this, consider a proposed game design,
where the player must collect static blue objects spread
across a game world, while avoiding collisions with mov-
ing red and yellow objects. A context for this game might
assign meaningful labels to the yellow, red and blue objects,
as well as the player. One assignment that might make sense
in the context of the real world is that the player is a bear,
collecting honey pots while avoiding bees and hunters. This
correlates with metaphors that we understand in videogames
(colliding with items is analogous to picking those items up,
for instance) as well as cultural knowledge we have about
real-world concepts like bears and honey.

If we were to consider a system which asserts meaning
independently, it might propose a different contextual as-
signment — one which is not grounded in a metaphoric un-
derstanding of videogames, but has some other justification
internal to the system. This justification may be something
that is difficult to interpret as an artefact, but that is ac-
ceptably creative as a process of creating context. For some
already-established relationship between concepts, perhaps
extracted from a news article as in (Cook and Colton 2012),
the system may make assignments to game objects where
relations have an internally consistent (but potentially exter-
nally nonsensical) mapping.

For example, both yellow and red objects have similar ef-
fects on the player when they collide. A conceptual mapping
might match causes political unrest to this code segment,
and assigns rebel forces and civilian protests to red and yel-
low objects, with the player as a country. This may not make
sense from the perspective of a person seeing objects collide
in a game world, because collisions imply some physical and
spatial relationship. But it is internally consistent in that sim-



ilar code segments are mapped to similar concepts, and the
agents in these relationships are consistent with the concept
map the system initially formulated.

This approach to context generation is appealing because
it frees the autonomous system from the burden of conform-
ing to accepted videogame context and metaphor, while re-
taining its strength from a computational creativity perspec-
tive. However, it is unclear how this would fare under other
evaluatory methods, particularly whether evaluations of the
game by people playing them would result in acceptance of
the generated contexts, or the dismissal of them as nonsen-
sical or ‘random’. In the absence of other ways in which to
connect theme to mechanic, however, proactive assignment
of meaning may be an appealing first step that allows us to
experiment with meaning assignment without being derailed
by the difficulty of connecting known videogame metaphors
(such as collisions in a physical space representing damage)
with real-world concepts.

Conclusions

We have presented a variety of possible solutions to the
problem of connecting generated or given code to a gen-
erated or given metaphorical context within a game de-
sign. We explored approaches that may work both for ex-
isting, human-authored codebases, as well as those which
are more general and may be able to work with code that
has been generated by a machine with no explicit context
pre-existing.

We are currently working on a system that aims to gener-
ate code and assign meaning to it autonomously, in a greater
scope and a finer level of detail than the system described in
(Cook et al. 2013). This system will need to communicate
the functionality of the code it generates, as well as relate
it to some real-world context. Although none of the systems
we outline in this paper are currently tested or implemented,
we plan to explore some of them soon.

Bridging the gap between context-free program code and
a rich, meaningful game theme is a difficult task for many
areas of research besides computational creativity. The abil-
ity to connect what is seen on a computer monitor to pro-
cesses and events we have witnessed in real life is a subtle
but ultimately commonplace activity for many people today,
which increases the difficulty researchers face when trying
to build systems which tackle this problem, and when sub-
sequently trying to convince people that the system is doing
this. With an abundance of work now emerging both on the
side of game studies and within procedural generation com-
munities, however, it seems we are ready to begin building
systems that confront this problem head-on.

Acknowledgments

We would like to thank Tony Veale for discussions about
linguistic annotations, and Adam Smith for discussion of
model checkers as a means of tracing program states. We
would also like to thank the reviewer comments that greatly
improved the flow and clarity of the paper. Thanks also to
Mike Treanor for suggestions that broadened the base of this
paper. This work has been supported by an EPSRC grant.

References

Baccianella, S.; Esuli, A.; and Sebastiani, F. 2010. Sen-
tiwordnet 3.0: An enhanced lexical resource for sentiment
analysis and opinion mining. In Proceedings of the Seventh
International Conference on Language Resources and Eval-
uation (LREC’10).

Clarke, E. M.; Emerson, E. A.; and Sistla, A. P. 1986. Au-
tomatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems 8:244-263.

Colton, S.; Charnley, J.; and Pease, A. 2011. Computational
Creativity Theory: The FACE and IDEA models. In Pro-
ceedings of the Second International Conference on Com-
putational Creativity.

Cook, M., and Colton, S. 2012. Initial results from co-
operative co-evolution for automated platformer design. In
Proceedings of the 15th European Conference on the Appli-
cations of Evolutionary Computation.

Cook, M.; Colton, S.; Raad, A.; and Gow, J. 2013. Mechanic
miner: Reflection-driven game mechanic discovery and level
design. In Proceedings of the 16th European Conference on
the Applications of Evolutionary Computation.

Cook, M.; Colton, S.; and Gow, J. 2013. Nobody’s a critic:
On the evaluation of creative code generators. In Proceed-
ings of the 4th International Conference on Computational
Creativity.

Evans, R., and Short, E. 2013. Versu: A simulationist inter-
active drama. http://www.versu.com/.

Jarvis, E., and DeMar, L. 1980. Defender.

Liu, H., and Singh, P. 2004. Conceptnet: A practical
commonsense reasoning toolkit. BT Technology Journal
22:211-226.

Miller, G. A. 1995. Wordnet: A lexical database for English.
Communications of the ACM 38:39-41.

Nelson, M. J., and Mateas, M. 2007. Towards automated
game design. In Artificial Intelligence and Human-Oriented
Computing, 10th Congress of the Italian Association for Ar-
tificial Intelligence.

Nelson, M. J., and Mateas, M. 2008. An interactive game-
design assistant. In Proceedings of the International Con-
ference on Intelligent User Interfaces.

Smith, A. M., and Mateas, M. 2011. Knowledge-level cre-
ativity in game design. In Proceedings of the Second Inter-
national Conference on Computational Creativity.

Treanor, M.; Blackford, B.; Mateas, M.; and Bogost, 1.
2012a. Game-o-matic: Generating videogames that repre-
sent ideas. In Proceedings of the Third Workshop on Proce-
dural Content Generation in Games.

Treanor, M.; Schweizer, B.; Bogost, I.; and Mateas, M.
2012b. The micro-rhetorics of Game-o-Matic. In Founda-
tions of Digital Games, 18-25. ACM.

Treanor, M. 2013. Investigating Procedural Expression And
Interpretation In Videogames. Ph.D. Dissertation, Univer-
sity of California, Santa Cruz.



